If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

Brian J. Nieman,1,2 Marissa C. Blank,3 Brian B. Roman,4 R. Mark Henkelman,1,2 and Kathleen J. Millen5,6

1Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; 3Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; 4Division of Biological Sciences, University of Chicago, Chicago, Illinois; 5Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, Washington; and 6Department of Pediatrics, University of Washington, Seattle, Washington

Submitted 5 July 2012; accepted in final form 30 August 2012

The development of the brain and skull is an intricate and coordinated process that results in two complex structures fitting tightly together. Both physical and genetic factors participate in the direction of this process, and changes in either may result in an altered brain and/or skull morphometry. Characterization of such alterations, and of how brain and skull alterations relate to one another, will provide insight into the process of normal brain and skull development and into conditions where this development is perturbed.

It is recognized that the physical interaction between structures in the developing brain and skull can induce covariation in their shape (61). Premature fusion of a cranial suture, for example, results in an abnormal skull shape due to growth restriction in one direction (51). Brain growth is also physically constrained in these circumstances, and the brain is similarly altered in shape (5, 6, 77). Fear of increased intracranial pressure and abnormal craniofacial development motivates corrective surgery in these patients to partly normalize anatomical outcome (71). Furthermore, simple geometric measurements of the skull, such as the angle between the skull base and the front of the brain or landmarks on the facial bones, show a high degree of correlation with the total volume of the brain (16, 59, 81, 82). This observation seems to hold true in multiple species of mammals, a fact that informs some studies in anthropology and evolutionary science.

Brain and skull development are also controlled by common genetic factors (61). Such a dependence on genetics, as distinct from physical influences, is clear from co-occurrence of facial and limb phenotypes, such as an example (76, 85), but also occurs in the brain and skull. Even in the case of craniosynostosis, morphological changes are observed throughout the brain, suggesting that additional genetic factors contribute to altered brain development (4, 77). Moreover, craniofacial abnormalities in mice have been generated by targeted (or random) manipulation of genes that impact skull development (52, 65, 97), including examples producing craniosynostosis (3, 63, 91), Down syndrome (7, 78), and cleft lip and palate (44, 72). Many of these genes were first identified (or have since been identified) as factors in related human conditions, and the genetic and phenotypic similarities between the two species provide a basis for probing the mechanisms of abnormal development and a means of testing novel interventions.

As the brain and skull develop simultaneously and, at least in the early stages, interdependently, it is not surprising that shape tends to correlate between the two. Holoprosencephaly is a notable example that has been appreciated for some time, wherein the degree of craniofacial phenotype is highly predictive of the underlying brain phenotype (33). Similarly, fetal alcohol syndrome produces characteristic facial phenotypes (28, 29) whose severity is predictive of the degree of mental disability (60) and changes in brain anatomy (83, 95) and which can be replicated in the mouse (8, 24, 70, 89). More recent work explores the possibility of more subtle connections between facial and brain phenotypes in autism spectrum disorder (2) and cleft lip/palate (93). It seems reasonable in cases showing a correspondence between brain and skull phenotypes to attribute the relationship to common physical and genetic interactions during development. However, there are also circumstances in which these phenotypes seem to diverge. In Dandy-Walker malformation, the posterior fossa tends to be larger than normal although the cerebellum contained within tends to be smaller (11), resulting in collection of cerebrospinal
fluid in the unoccupied intracranial space. Developing an understanding of covariation in brain and skull features and the circumstances in which it becomes disrupted will be important in the study of many human conditions in which brain and craniofacial development are affected.

In addition to its significance in development and disease, the relationship between the brain and the skull is of interest in studies of anthropology and evolutionary science (77). In this case, the degree of brain development and its possible, albeit controversial (20, 50), implications for behavior and cognition are paramount, but direct fossil evidence of brain shape is rare and interpretation of individual specimens can be difficult (9, 47, 49). Fossil evidence of skull shape is more commonly available and therefore significant effort is made to interpret endocranial features and their ramifications for brain anatomy (48), and individual specimens may be considered at length (37–39, 62, 90). A long-standing theoretical question of whether brain reorganization or encephalization (i.e., the relative increase in the size of the brain) occurred first in evolutionary history persists, and its answer will depend critically on the relationship between the skull and the brain. Sophisticated tools for making measurements by hand (47) have been replaced largely by instruments permitting three-dimensional (3D) digitization (36) and by x-ray computed tomography (CT) (32, 79). The positions and relationships of prominent skull features (landmarks) provide a measure of shape, often using combinations of principal component or related analyses (41, 73, 99, 101), thin-plate splines (41, 80) or three-dimensional (3D) finite-element analysis (25) for morphometric analysis.

These evaluations allow shape comparisons between features or species. Comparison of ancient and modern hominid crania has allowed inferences about shape changes over the course of evolution (17–19). The changes reveal that morphological features do not evolve in isolation, but in linked modules (26, 94), such that an elongated face, for instance, tends to be accompanied by characteristic changes in the cranial base (86). In a similar way, morphological comparisons between samples of various sizes indicate that shape is often size dependent, a property known as allometry (53). For example, an increase in the size of the neurocranium is generally accompanied by a proportionally larger increase in the size of the face (75, 80).

Study of shape over the course of development has revealed differences in the developmental process between species. For instance, the morphological trajectory of the human brain shows a prominent expansion of the parietal and cerebellar regions that do not occur in the chimpanzee (67). The human skull also changes shape through development, even after the brain has reached full size (13, 66). Morphological variability during growth provides a link between development and evolution (53, 54, 100, 101), and there is a common interest in identifying links between brain and skull shape and investigating what genetic changes alter this relationship.

The mouse is a particularly important model system for studying mammalian development. Morphological measurements of the brain and skull in mice can be linked directly to modified genetic factors. In previous work, mouse skull measurements have been made on the basis of manually identified landmarks in 3D images (26, 45, 46, 59, 78, 96, 100). Similar analyses have also been conducted in 3D images of the embryo (84) and the brain (7, 61, 73). We have also evaluated the morphometry of the brain and skull separately by computer-automated registration methods, which eliminate the need for manual identification of landmarks (68). While this approach may not be appropriate for very large phenotype differences, such as that between species, because it may become difficult for automated algorithms to meaningfully identify homologous points throughout the brain or skull, it does provide an efficient way of exploring brain-skull phenotype relationships in a variety of mouse models where the phenotypic changes are relatively small and the number of samples large.

In this work, we propose using combined magnetic resonance imaging (MRI) and microcomputed tomography (micro-CT) to evaluate the relationship between the 3D shapes of the brain and skull. This combination is meant to take advantage of the strengths of each imaging modality; MRI is known for excellent soft-tissue contrast, while CT is best suited for imaging of bone. Similar in concept to analyses that have been explored in other settings (6, 77), our analysis is designed to identify and compare brain and skull phenotypes. Our methods are tailored specifically for investigations in the mouse. We first characterize 3D differences between wild-type and mutant mouse groups separately in the brain and skull and then align the imaging results for comparison of these phenotypes. The predictive value of brain phenotypes in regions of statistically significant skull phenotypes is evaluated. We considered two mouse mutants to demonstrate our analysis, Gja1H11001/H11002 (40) and Zic1H11001/H11002;Zic4H11001/H11002;ShhH11001/H11002 (15), respectively, at adult and young adult ages. These mutants are models of oculodentodigital dysplasia (ODD) and of Dandy-Walker malformation (DWM).

MATERIALS AND METHODS

Mice. The Gja1H11001/H11002 mutant mouse, modeling ODD, was generated by N-ethyl-N-nitrosourea (ENU) mutagenesis at the Centre for Modelling Human Disease (Toronto, ON, Canada) and has been described previously (40, 68). In brief, C57BL/6 male mice were treated with ENU and then bred with C3H/HeJ female mice. Offspring were bred to C3H/HeJ to test for heritability, and lines were maintained by breeding with C3H/HeJ females. Third-generation mice were used in these experiments, with unaffected littermates used as controls. Mice were fixed at ~60 wk of age for ex vivo imaging, with five mice in each the control and mutant groups. Zic1H11001/H11002;Zic4H11001/H11002;ShhH11001/H11002 mice, modeling DWM, were maintained on a 129S1/SvImJ background. Litter-matched and sex-matched Zic1H11001/H11002;Zic4H11001/H11002;ShhH11001/H11002 mice and Zic1H11001/H11002;Zic4H11001/H11002;ShhH11001/H11002 (9 of each) were killed at 38 ± 6 days of age (15). Image analyses and comparisons described below were all made between control and mutant images for the ODD and DWM separately.

All mouse imaging was performed ex vivo after intracardiac perfusion fixation according to established protocols (87). Perfusion of saline and heparin was followed by 10% buffered formalin phosphate or 4% paraformaldehyde solution. A gadolinium-based contrast agent (Magnevist, Berlex Canada, or Prohance, Bracco Diagnostics) was included in the perfusate solutions (87, 102). Zic1H11001/H11002;Zic4H11001/H11002;ShhH11001/H11002 specimens were further prepared for imaging by removing the extracranial tissue and soaking in 2 mM gadolinium-contrast solution for 7 days, allowing use of smaller, more sensitive solenoid coils for imaging. For both models, brain specimens remained within the skull to avoid distortions that may otherwise result from fixation and handling. All animal protocols were approved by the Hospital for Sick Children Animal Care Committee or by the Institutional Animal Care and Use Committee at the University of Chicago.

MRI. All MR images were acquired with a multiple-mouse MRI system and a Varian INOVA or DirectDrive console (Varian NMR system) and a Varian INOVA or DirectDrive console (Varian NMR...
Innovative Methodology

Instruments, Palo Alto, CA) and a 7.0-T magnet. Images of Gja1\textsuperscript{mtr} mice were acquired with a 3D spin-echo sequence in 30 mm inner diameter millipede coils. Sequence parameters included 36 ms echo time (TE), 550 ms repetition time (TR), excitation tip angle 140°, diameter millipede coils. Sequence parameters included 30 ms effective TE, 10 ms echo spacing, 6 echoes, 325 ms TR, 4 averages, 25 \times 12 \times 12 mm field-of-view, and 780 \times 432 \times 432 matrix size for an image resolution of 80 \mu m isotropic and an imaging time of 13 h 45 min. Images of Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mice were acquired with a 3D fast spin-echo sequence using 14 mm diameter solenoid coils. Sequence parameters included 30 ms effective TE, 10 ms echo spacing, 6 echoes, 325 ms TR, 4 averages, 25 \times 12 \times 12 mm field-of-view, and 780 \times 432 \times 432 matrix size for an image resolution of 32 \mu m isotropic and an imaging time of 11 h 20 min.

CT imaging. Micro-CT images of the Gja1\textsuperscript{mtr} skulls were acquired using a MS-9 micro-CT scanner (GE Medical Systems, London, ON, Canada) with the x-ray source at 80 kV. Images were acquired in 2.5 h with 900 views and reconstructed on a 120 \mu m isotropic grid. Micro-CT images of the Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mouse skulls were acquired using a Triumph Tri-Modality system (Gamma Medica, Sherbrooke, QC, Canada) with the x-ray source at 75 kV. Three-dimensional images were reconstructed from 360 views to produce a 78 \mu m isotropic image.

Registration and structural analysis. Gja1\textsuperscript{mtr} MRI, Gja1\textsuperscript{mtr} CT, Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} MRI, and Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} CT image sets were initially registered together independently for each modality and genotype (combining the control and mutant Gja1\textsuperscript{mtr} together in one space and the control and mutant Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} together in another space). All the registrations (linear and nonlinear) were performed with tools from the Montreal Neurological Institute (30). The registration procedure commenced with rigid-body registration (which includes three translation and three rotation parameters) to a pre-existing atlas to define orientation. Subsequently, to define an unbiased space independent of the atlas, all pairwise affine registrations between images in the data set were performed and used to compute an average linear transform for each image. Each average transform was applied to its respective image and all resultant images were intensity averaged to generate an unbiased (linear) average. Subsequently, images were registered nonlinearly toward the population average, and these results used to generate a refined average. This process was repeated iteratively at progressively finer deformation resolutions. At the final stage, affine linear transformations were removed from the final deformation fields using a mask over the analysis region of interest to produce a purely linear and a purely nonlinear deformation field for each image. The separation of the deformation field into these two components is convenient because it allows morphological changes to be analyzed with or without the effects of bulk volume change as needed. The unbiased average was adjusted to ensure it was centered on all deformation fields. These registration procedures and analyses have been described in numerous previous publications (23, 34, 55, 58, 68, 87). The end result of this process provides a complete set of nonlinear transforms that bring each image to an unbiased average space with all brain or skull structures in register.

Volumetric changes were computed on the basis of the deformation field results. Volumetric changes were first evaluated by calculating the determinant of the Jacobian matrix (a matrix whose elements are the first-order partial derivatives of each vector component of the deformation field, which here included both linear and nonlinear parts) at each voxel (3D pixel) in the image. This represents the voxel volume change as a ratio between the volume of the voxel after transformation to the original volume. All comparisons were made between Gja1\textsuperscript{mtr} mice and their littermate controls, or between mutant Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} and control Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mice (and not between Gja1\textsuperscript{mtr} and Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mice). For further analysis of brain images, a segmented atlas (34) consisting of 63 structures was registered to the final unbiased average image. This matched existing segmentations from the atlas to the average images of interest. Measurement of brain structure volumes was then achieved by integration over the determinant of the Jacobian matrix (a matrix whose elements are identical to an algorithm described elsewhere for evaluating cortical thickness (56). The vector pointing from the intracranial space to the normal vector was added to the rostral-caudal direction (labeled as inplane (1) at right); and 3) the residual displacements (perpendicular to each of the previous two vectors and thus including left-right and dorsal-ventral components in the plane of the skull). The first 2 of these, the normal component and the rostral-caudal in-plane component, are presented in detail in subsequent figures for both Gja1\textsuperscript{mtr} and Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mice.

Fig. 1. Schematic showing the decomposition of displacement vectors on the skull. A sketch of the outside of the skull surface is shown at left. At each location on the surface (square at left, expanded at right), the normal vector pointing out of the skull surface was defined. Displacements resulting from the registrations were then separated into 3 components: 1) displacements along the skull normal vector; 2) displacements both in the plane of the skull (that is, perpendicular to the normal vector) and pointing in the rostral-caudal direction (labeled as inplane (1) at right); and 3) the residual displacements (perpendicular to each of the previous two vectors and thus including left-right and dorsal-ventral components in the plane of the skull). The first 2 of these, the normal component and the rostral-caudal in-plane component, are presented in detail in subsequent figures for both Gja1\textsuperscript{mtr} and Zic1\textsuperscript{+/--};Zic4\textsuperscript{+/--};Shh\textsuperscript{+/--} mice.
toward the extracranial space was taken as the local definition of the skull surface normal vector and used to resolve the deformation fields into three components: 1) displacement normal to the skull surface, 2) displacement in the plane of the skull and in the rostral-caudal direction, and 3) the residue both in the plane of the skull and in the left-right or dorsal-ventral direction.

Statistical testing. Structural volume results for MRI data, voxelwise Jacobian data (more precisely, the logarithm of the Jacobian matrix determinant), and normal and in-plane vector displacements were compared with Student’s t-tests, independently for each mutant with its respective control group. To compare complete vector displacements, we computed the Hotelling’s $T^2$ field (21, 68) and then visualized results in significant regions using the magnitude of the average vector displacement between the mutant and control groups. The Hotelling’s $T^2$ field is related to the $F$-distribution by a multiplicative scale factor, so statistical testing was achieved with an $F$-test. All statistical tests were corrected for multiple comparisons using the false discovery rate (FDR) (14), which ensures that, on average, no more than a specified percentage of positive results will be false positives (and which is a more stringent statistical test than $P < 0.05$). Description of the FDR algorithm and of its use in image analysis in particular has been described elsewhere (42).

We modeled skull surface displacements as a function of brain surface displacement, brain structure volumes, and genotype. To determine which factors were most important, we performed analysis of variance with an $F$-test after adding additional model terms (starting with the factor that accounted for the greatest variance). The same procedure was used to evaluate brain volume and genotype as explanatory variables for intracranial volume derived from CT. The predictive analyses are correlative in nature, so the modeling of CT skull displacements by MR brain displacements or volumes is not intended to suggest the latter are causative but, rather, establishes a relationship in the shape of the different features.

RESULTS

$Gja1^{Hr}$ and $Zic1^{+/−};Zic4^{+/−};shh^{+/−}$ show morphometric brain phenotypes. We compared the brain structure of $Gja1^{Hr}$ and $Zic1^{+/−};Zic4^{+/−};shh^{+/−}$ mice with their respective control mice using high-resolution MRI of fixed mouse brains. We measured local changes in brain volume between the control and mutant mouse images at each voxel. Both $Gja1^{Hr}$ and $Zic1^{+/−};Zic4^{+/−};shh^{+/−}$ mouse mutants, respectively, models of ODD and DWM, showed significant abnormalities in structures throughout the brain (Figs. 2 and 3, respectively). Structural volume changes were also evaluated for 63 brain structures (34). Each of the mutants showed a total of 37 significantly different structure volumes. However, of the 37 structures identified as abnormal in each of the mutants, 24 structures were common between them, and 13 differed. Select structure volumes are plotted in Figs. 2 and 3.

$Gja1^{Hr}$ and $Zic1^{+/−};Zic4^{+/−};shh^{+/−}$ show morphometric skull phenotypes. We next compared the skull structure of the $Gja1^{Hr}$ and $Zic1^{+/−};Zic4^{+/−};shh^{+/−}$ mice to their associated controls using micro-CT. The first two of the directional displacements defined in Fig. 1 proved to be of greatest interest for the mutants examined here. The magnitude of vector

---

**Fig. 2.** MRI-detected brain phenotypes in the $Gja1^{Hr}$ mouse. Voxelwise volumetric changes (where FDR < 0.05) are shown overlaid on the unbiased average image (shown without overlay at left for each slice). Blue corresponds to decreases in size for the mutant and red to increases. Horizontal images (top left) include green lines indicating the location of the coronal slices (shown at right). Integration of voxelwise volume changes over segmented structure volumes provided a measure of volumetric changes. Thirty-seven (37) structures of the 63 tested showed significant differences (FDR < 0.05). Four structures of interest are shown in the bar graph (bottom left) with error bars showing standard SE. Volumes are shown normalized to the average control volume for each structure (shown in parentheses).
displacements mapping wild-type to mutant skulls, as well as the components of the displacements normal to and in the plane of the skull, showed significant differences in both mutants (Fig. 4). Morphological phenotypes were more widespread in the Gja1Jrt mutant (modeling ODD), which showed particularly prominent changes in the facial region. The phenotype in the Zic1+/−;Zic4−/−;Shh−/− mutant (modeling DWM) was more localized and most noticeable at the posterior part of the skull in the region of the interparietal bone. In this case, the displacement was primarily in the plane of the skull and in the rostral-caudal direction.

Gja1Jrt and Zic1+/−;Zic4−/−;shh−/− brain and skull phenotypes correspond. To compare the phenotype results obtained from the MRI and CT data, we registered MRI brain to micro-CT skull results via an affine registration (a mapping that includes three translations, three rotations, three scales, and three shears). The magnitude of deformations and the normal and in-plane displacements computed for the skull (as in Fig. 4) were also computed for the brain surface and then visualized after statistical thresholding. Visual comparison shows a high degree of correspondence in the brain and skull displacements in both cases (Fig. 5). The phenotype similarities are present in both magnitude and normal displacements and in the in-plane (rostral-caudal) displacements of the Zic1+/−;Zic4−/−;Shh−/−. Two isolated regions showed small differences in the skull and brain phenotypes in the Gja1Jrt in-plane data (Fig. 5C). The first region (identified by a green arrow in Fig. 5C) is on the lateral side of the skull and suggests a caudal shift in the CT skull data that is smaller in magnitude in the MRI data (and statistically significant over only a very small region). This appears in a flat, essentially two-dimensional, region of the skull surface where in-plane displacements may be more poorly constrained in the CT deformation analysis. The second difference, at the back of the brain and skull, highlights a mutant phenotype in which the caudal edge of the cerebellum is located more ventrally along the occipital plate in mutants compared with controls (as can be seen in Fig. 5C, inset).

To further investigate the brain-skull relationship, we tested the ability of brain surface displacements, brain structure volumes, and genotype, alone and in combination, to predict skull surface displacements. At the back of the head in the Zic1+/−;Zic4−/−;Shh−/− model of DWM, significant skull displacements of the interparietal bone were modeled as a function of corresponding brain surface displacements at the top of the cerebellum (Fig. 6, left) and as a function of total cerebellum volume (Fig. 6, middle). Each MRI measured parameter was significant independently; however, the addition of brain surface displacements or cerebellum volume to a model predicting skull displacements based on genotype alone (Fig. 6, right) did not provide a statistically significant improvement (P ~0.3 and 0.7 respectively, using an F-test for analysis of variance to compare fits). This proved to be the case for all voxels on the skull surface, indicating genotype is a better predictor of skull displacements than the local brain...
analyses of the structure measurements obtained with our methods. Identical analyses of the \textit{Gja1} 

anterior fossa tends to be enlarged though the cerebellum is posterior fossa. The sharp discontinuity between the genotypes evident in Fig. 7B instead indicates that the phenotype in the \textit{Zic1} 

DISCUSSION

The development of the brain and skull is a coordinated and sophisticated process that routinely results in a careful fit of one within the other. We have developed a combined MRI and CT analysis that allows a comparison of the geometries of the brain and skull in the mouse. Our results indicate that the brain and skull fit tightly together in each of the genotypes we examined. This tight fit is evident both from spatial maps of displacements on brain and skull surfaces, and from volumetric analyses showing the close correspondence between total brain and intracranial volumes. For the \textit{Zic1} 

mice. Both \textit{Gja1} 

and \textit{Zic1} 

mice showed significant phenotypes compared to the human case, in which the posterior fossa tends to be enlarged though the cerebellum is smaller (11). It is not possible from our data to determine if this...
difference in phenotype is related to an incomplete modeling of the genetic lesions in the DWM mouse model or to inherent differences in the brain between the mouse and human, notably including a disparate positioning of the cerebellum. It is important to note that the genotype used to model DWM for this analysis was in part a choice of convenience, since these mice are viable as adults. Our other DWM mouse models may be more likely to recapitulate the skull phenotype of human

Fig. 5. Correspondence of MRI-brain and CT-skull phenotypes in Gja1<sup>+/+</sup> and Zic1<sup>+/+</sup>;Zic4<sup>+/+</sup>;Shh<sup>+/+</sup> mice. Visualization of the magnitude (A, D), normal (B, E) and in-plane (C, F) displacements on the intracranial skull surface (top of each panel) and on the brain surface (bottom of each panel) show that morphometric phenotypes in the skull and brain closely correspond. This correlation is evident in both the Gja1<sup>+/+</sup> (A, B, C) and Zic1<sup>+/+</sup>;Zic4<sup>+/+</sup>;Shh<sup>+/+</sup> (D, E, F) mutants. Positive directions are defined as extracranial (B, E) and rostral (C, F). The skull view is shown after removing one lateral half to enable view of the inside surface (the cut plane is colored a solid gray). In the Zic1<sup>+/+</sup>;Zic4<sup>+/+</sup>;Shh<sup>+/+</sup> mutant, close similarities between brain and skull phenotypes are evident in all panels (D, E, F). In the Gja1<sup>+/+</sup> mutant, the magnitudes displacements show little change (A, FDR <0.15 and FDR <0.10 for the CT and MR data, respectively) and the normal displacements closely correspond. Two differences in the skull and brain phenotypes appear on the in-plane displacements of the Gja1<sup>+/+</sup> mutant (C): on the lateral side of the skull (green arrows) the CT data suggests a caudal shift larger than is present in the MRI data; and at the caudal edge of the cerebellum (red arrows) the shift in the skull and brain are in opposite directions. The latter difference evidences a shift in the cerebellum relative to the skull, such that lobe IX (inset C, purple arrowheads) extends more ventrally from the edge of the occipital plate in the mutant (inset C, blue arrowheads). All colored regions in B–F are shown with FDR <0.05. White arrows (E) indicate the location of analysis plotted in Fig. 6.

Fig. 6. Modeling CT-skull displacements by genotype, brain structure volume, and brain surface displacement in Zic1<sup>+/+</sup>;Zic4<sup>+/+</sup>;Shh<sup>+/+</sup> mice. Skull displacements were modeled as a function of brain surface displacements, brain structure volumes, and genotype. Although each independently showed significance, a model based solely on genotype was not improved by addition of MR-derived brain structure measurements. Lines of best fit are shown with 95% confidence intervals.

Innovative Methodology

COMBINED ANALYSIS OF BRAIN AND SKULL PHENOTYPES
DWM; however, they are lethal prior to weaning, adding the complication of incomplete skull development (1, 15). Nonetheless, the analysis as demonstrated here provides a quantitative measure of the brain-skull phenotype relationships and will be useful in additional studies of mouse models of human conditions for identifying perturbations of the close fit between the brain and skull.

Both MRI and CT data proved to be sufficiently sensitive to detect phenotypes in the mouse models we examined here. It is worth noting two factors that affect the phenotype comparisons we made between the results. First, the CT skull images, in contrast to the MR images, consist largely of thin isointense bony plates and provide less local constraint for the volumetric registration procedures because of their two-dimensional character. This will allow more in-plane variability in the resulting deformation fields. In combination with other changes in the skull, this is a possible explanation for the CT and MR differences at the lateral side of the skull in the Gja1<sup>1fr</sup> mouse model of ODD. We note that this challenge is not unique to the deformation-based methods of comparison we use here and that it is conceptually equivalent to the requirement for “semilandmarks” in landmark-based methods of morphological analysis (74). Second, differences in statistical sensitivity are exacerbated by the statistical testing procedure we used here because the FDR correction for multiple comparisons becomes less stringent as more statistically significant voxels are detected. This is likely to produce somewhat larger statistically significant maps for some phenotypes and image modalities and explains the somewhat larger regions of significance on the Zic<sup>1</sup><sup>1fr</sup>- Zic<sup>4</sup><sup>1fr</sup>-<sup>Shh</sup><sup>1fr</sup> brain surface compared with the inside skull surface (Fig. 5, D–F) because of the large number of significant voxels within the brain. With this acknowledgement of the differences in the nature of the CT and MRI data sets as well as the influence of the statistical testing procedure, the MRI and CT data show excellent correspondence of brain and skull phenotypes in both of the mouse models we examined.

Interestingly, genotype proved to be a better predictor of skull morphometry than did underlying brain features. This was true whether brain surface displacements or structure volumes were considered. On the other hand, we also found the intracranial volume was more effectively predicted by total brain volume than by genotype. Clearly, the local shapes of the brain and skull are highly genotype-dependent, but the total intracranial and brain volume also depend on several other factors affecting overall growth. The tight fit of the brain and skull was not disrupted in either of the genotypes we examined. It would be interesting in future experiments to explore the relative importance of genetic and physical factors during development on the final shape and size of the brain and skull in this context and to isolate genotypes where the brain and skull phenotypes separate to produce a much larger difference in brain and intracranial volumes.

In a similar way, more complete analysis of phenotype variability between genotypes and in individuals may provide insight into the physical and genetic factors influencing brain and skull development. A change in the phenotype variability of a particular genetically modified mouse strain would reflect a change in the degree of developmental control, even in the absence of phenotypic differences in the population average. It would be interesting to determine if a separation of brain and skull phenotypes also engenders an increase in the phenotype variability, which might provide insight into the role of physical vs. genetic interactions. We did not find significant differences between the structure volume variances in the mice in this study, even though both DWM and ODD are associated with a variable clinical presentation. It may be that a larger number of mice are required for this variability analysis, particularly in the Gja1<sup>1fr</sup> mice, or that the registration process itself contributes a nontrivial part of the variability observed. It is also possible that individual variation in particular mice reflects plasticity of structures within the brain, skull, or face.

Although further experiments would be necessary to determine whether our methods could detect plasticity associated with craniofacial development, morphological plasticity has already been demonstrated in the brains of adult mice (58). Thus, experiments comparing skull and brain phenotypes after manipula-
tion of environmental factors may allow one to probe the adaptability and variability of specific genotypes.

Developmental abnormalities in brain and skull morphology frequently appear together in the human population. In some cases, including craniosynostosis as an example, the two structures remain tightly fitted and the shapes remain closely related. In other cases, the close fit between the brain and skull may be lost. A notable example of the latter includes DWM and related conditions such as cerebellar vermis hypoplasia and mega-cisterna magna. Even in these cases though, other brain phenotype correlations may be noteworthy; DWM patients, for instance, can exhibit hypoplasia of the corpus callosum in addition to the cerebellum (10, 12). Cerebellar hypoplasia may also be associated with frontal lobe deficits, either evidenced by anatomical or behavioral changes (27). Similarly, in addition to characteristic changes in the shape of the face (92), the anterior cerebrum and cerebellum are affected in nonsyndromic cleft lip and palate (31, 93) and van der Woude syndrome (69) patients. Exploring these phenotype links in a broader range of relevant mouse models will reveal patterns inherently linked to the development process.

Relationships between the total volumes of the intracranial space and the brain are also of relevance in anthropology and evolution. Application of similar tools to the ones we describe here to a broader range of mouse genetic variants might be able to expand the correlative data in Fig. 7A and determine genetic factors affecting the modular development of the brain and skull. Morphological evaluations in the case of large phenotypic variations, such as between different species, may instead be best handled by landmark-based analysis. Results from a large population of genetically engineered mice with a range of phenotypes such as in a screen, however, could be efficiently obtained with our methods and have important implications for understanding mammalian developmental processes.

In a similar way, it would be interesting to determine if a combination of features within the mouse skull could be predictive of abnormalities within the mouse brain. Like the mice we examined here, mouse models of Apert syndrome and Down syndrome both show craniofacial and brain abnormalities (3, 7, 64, 78). Joint analysis in a number of different mouse models stands to elucidate which structures are developmentally linked. At least within a range of genetic variants and in closely related species, these phenotype linkages may not be limited to structures immediately adjacent to the skull, as correlation of skull features with more distant phenotypes is possible [analogous to phenotype correlations between the corpus callosum and the cerebellum (10, 12) and between the brain and face (69, 93) already mentioned].

The development of the brain and skull is a coordinated and sophisticated process that routinely results in a careful fit of one within the other. Disruption of this process is notable in several human conditions and appears to be affected by both genetic and physical factors. We have developed a combined MRI and CT analysis that allows a comparison of the geometries of the brain and skull in the mouse. We observed a close relationship between the morphological changes in these structures in two mouse mutants. This type of analysis will be useful for study of brain-skull relationships in mouse models of human conditions. In particular, we expect these methods in application to an appropriate group of mouse mutants will help provide a mechanistic understanding of abnormal craniofacial development, especially in cases where the close fit between the brain and skull becomes disrupted.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the Centre for Modeling Human Disease for the Gja1 in vivo mouse.

GRANTS
Funding support was provided by the Ontario Institute for Cancer Research through funding from the Government of Ontario and by National Institutes of Health (NIH) Grant ROI NS-050386 (to K. J. Millen). R. M. Henkelman is recipient of a Canada Research Chair in Imaging. M. C. Blank is recipient of NIH Training Grant T32GM-007183.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES


Innovative Methodology

65. Murray SA.
66. Richtsmeier JT, Baxter LL, Reeves RH.
67. Rogers SW.