Use of contiguous congenic strains in analyzing compound QTLs

John P. Rapp and Bina Joe

Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio

Submitted 2 September 2011; accepted in final form 18 November 2011

Rapp JP, Joe B. Use of contiguous congenic strains in analyzing compound QTLs. Physiol Genomics 44: 117–120, 2012. First published November 22, 2011; doi:10.1152/physiolgenomics.00136.2011.—Genetic analysis of polygenic traits in rats and mice has been very useful for finding the approximate chromosomal locations of the genes causing quantitative phenotypic variation, so-called quantitative trait loci (QTL). Further localization of the causative genes and their ultimate identification has, however, proven to be slow and frustrating. A major technique for gene identification in such models utilizes series of congenic strains with progressively smaller chromosomal segments introgressed from one inbred strain into another inbred strain. Under the assumption that a single causative locus underlies a QTL, nested series of congenic strains were earlier suggested as an appropriate configuration for the congenic strains. It is now known that most QTL are compound, that is, the QTL signal is caused by clusters of loci where alleles exert positive, negative, and interactive effects on the trait in a given strain comparison. It is argued that in this situation an initial series of nonoverlapping contiguous congenic strains over a relatively large chromosomal region will lead to a better appreciation of the underlying complexity of the QTL and therefore more rapid gene identification. Examples from the literature where this strategy would be helpful, as well as a case where it would be potentially counterproductive, are given.

Keywords: quantitative trait loci; polygenic inheritance; Dahl rats; hypertension

Discovery of the multiple loci causing variation in quantitative traits is difficult because the phenotype of a quantitative trait does not uniquely predict the underlying causative genotypes. Considerable progress has been made in the theory and techniques for locating quantitative trait loci (QTLs) to regions of chromosomes in model organisms especially those using inbred strains with different quantitative phenotypes (2–4, 15, 16, 18, 22, 26, 30, 33). Much less effort has been given to the development of techniques to systematically identify the underlying genes (3, 29). Considering the analysis of QTLs in rats and mice, the follow-up technique most often applied after locating a QTL in segregating populations (or by other techniques) is the construction of congenic strains. This involves the marker-assisted introgression of a large region of chromosome containing a QTL from one inbred (donor) strain into another inbred (recipient) strain by well-established techniques (14, 18, 31, 32). The phenotype of the initial congenic strain is then compared with the recipient strain to establish that the congenic chromosomal segment in fact has an effect on the phenotype.

The obvious follow-up technique to identify the gene(s) underlying the QTL congenic interval is to reduce the originally introgressed chromosomal segment by subsequent construction of congenic substrains derived from the original congenic interval, which may be 25–50 cm (or Mb) in size. It is this early stage of reducing the target region that has not received much theoretical consideration. In our view this accounts for the slow progress made in going from QTL to quantitative locus identification.

Originally we suggested the (admittedly obvious) method shown diagrammatically in Fig. 1 (24). The figure uses blood pressure in rats, specifically inbred hypertensive rats, compared with an inbred normotensive strain, as an example. The example of blood pressure is used since our experience with it illustrates the problems in QTL analysis discussed below. In Fig. 1 the original congenic strain (strain 1) was produced by introgressing a segment of chromosome from a normotensive strain into the hypertensive strain. This resulted in a reduced blood pressure in strain 1 compared with the hypertensive strain. A series of hypothetical nested congenic substrains constructed from the original congenic strain are shown (Fig. 1, strains 2–7). These are produced by crossing congenic strain 1 to the recipient (hypertensive) strain and then intercrossing the resultant F1 rats to make an F2 population. Animals carrying recombinant chromosomes in the F2 population are identified by genotyping, backcrossed to the recipient strain to duplicate the desired chromosome, which is then fixed in the homozygous state by further selective marker-assisted breeding. The strains thus produced are phenotyped, and as the introgressed region from the normotensive strain crosses the location of the QTL between strains 4 and 5 there is a step change in blood pressure. Thus the QTL is between markers D and E shown at the top of the Fig. 1.

Conceptually this is easy, but in practice strain differences are not always so clear because of high phenotypic variability, especially with blood pressure (9). Also the location of the QTL as the difference between two strains is not sufficient but has to be confirmed by constructing a shorter congenic strain just encompassing the interval D to E and comparing this to the hypertensive strain. If a phenotypic effect is still present then another iteration of congenic substrains in the interval D to E is invariably required to narrow the QTL interval enough for gene identification. More importantly it is now widely recognized that QTL regions identified in logarithm of the odds (LOD) plots of segregating populations (or by other means) are usually compound. Such regions can contain alleles with positive or negative effects at more than one locus in the QTL interval, and there may be interactions between loci in the QTL interval. Examples of these problems in our work with blood pressure were observed on chromosomes 1 (27), 2 (6), 3 (17), 5 (7), 9 (11), and 10 (28). Moreover, the QTL may not be anywhere near the LOD peak because of ghost peaks between QTLs (19, 20). Such effects can certainly be dissected using...
the scheme in Fig. 1, but it can be quite confusing, and consideration of a different approach is also warranted.

Given that the ultimate goal is to localize each causative locus within a large QTL region into a small congenic interval and that more than one such locus is likely in a large (or even a small) QTL region, it makes sense to start out making small congenic intervals earlier in the process. Figure 2 shows a hypothetical set of contiguous congenic substrains in a large QTL region that contains two causative loci acting additively where the donor allele at QTLa reduces blood pressure and the donor allele at QTlb increases blood pressure. In this situation it is immediately obvious that substrate 5 in Fig. 2 shows an augmented phenotypic effect due to QTLa because of the removal of the effect of QTlb; this is a significant advantage. There are examples in the literature of linked QTL with opposite effects on blood pressure (1, 23, 28). In the case where QTLs a and b are additive in the same direction the effect of each will be smaller than the original congenic strain. In the case where QTLs a and b are nonadditive (they interact) it is likely that each would show up with weak phenotypic effects the sum of which is not the same as the original congenic strain. In this case construction of a double congenic from small nonoverlapping substrains could be done to prove an interaction as has been done for interacting loci that were on different chromosomes (25). The point is that the strains for construction of a double congenic are likely to be immediately available.

One situation where the use of contiguous congenic strains is likely to fail is where there are two linked causative loci in a QTL region such that interacting alleles at both loci are required for an effect but that neither allele alone causes an effect. We observed this exact situation for blood pressure in Dahl S rats on chromosome 5 (7), and here the nested congenic strains worked eminently well. A counterexample is, however, also instructive. Initially we found a blood pressure QTL on chromosome 13 in Dahl rats using nested congenic strains (34). Further analysis using nested strains proved futile (unpublished). Moreno et al. (21) made 23 (highly redundant overlapping) congenic strains covering all of rat chromosome 13, which revealed a complex genetic architecture consisting of four regions containing interacting alleles that influence blood pressure. In this case contiguous strains were successful at defining a complex architecture where nested strains failed. Other examples in Dahl S rats where the contiguous congenic strain construction would probably have been the better approach to unravel a complex genetic architecture (two or more underlying causative loci) are on chromosomes 1 (27), 2 (6), and 10 (8). For didactic purposes Fig. 2 has only two theoretical causative loci, but the usefulness of the contiguous approach is enhanced where there are three or more causative loci underlying the QTL. Our experience is that there are always at least two.

It is rational to conclude that the best method to apply to an initial round of congenic strains depends on the underlying complex architecture of the QTL. Since this is unknown a priori, there is risk with either method. The example on chromosome 5 above is rare in our experience; thus the use of contiguous congenic strains in a large QTL region early in an analysis merits consideration.

The barrier to the analysis in Fig. 2 is of course the construction of the contiguous congenic substrains. The idealized strains in Fig. 2 in reality would be overlapping in some places and might have gaps between strains in other places. Overlaps and gaps should be minimized. As long as the gaps were not too extensive the chance of missing a QTL would not be inordinate. In any case the substrains in Fig. 2 can be constructed from the recombinant chromosomes that are generated in the initial phase of producing nested recombinant chromosomal segments, i.e., those shown in Fig. 1. Typically these are produced in an F2 population of ~200 rats derived from crossing the initial congenic strain with the recipient strain. It is emphasized that it is not necessary to construct (or phenotype) the congenic strains in Fig. 1 to make the strains in Fig. 2; it is only necessary to obtain the recombinant chromosomes and to work with them in a backcross to the recipient strain (see below). In Fig. 1 only nested fragments starting at

Fig. 1. Illustration of an idealized set of nested congenic substrains constructed from an initial congenic strain. The initial congenic strain (strain 1) was made by introgressing a segment of chromosome from a donor normotensive strain into a recipient hypertensive strain. It is assumed that the segment contains a single quantitative trait locus (QTL) where the donor allele lowers blood pressure by 20 mmHg. The diagram is modified from Rapp and Deng (24).

Fig. 2. Illustration of an idealized set of contiguous congenic substrains constructed from an initial congenic strain. The initial congenic strain (strain 1) was made by introgressing a segment of chromosome from a donor normotensive strain into a recipient hypertensive strain. It is assumed that the segment contains two additive QTLs where the donor allele at QTLa lowers blood pressure by 20 mmHg and the donor allele at QTlb increases blood pressure by 10 mmHg. Note that in both Figs. 1 and 2 the initial congenic strain lowers blood pressure by 20 mmHg.
the left of the diagram are shown, but of course similar
fragments starting from the right of the figure will also be
generated. Thus in the initial screen the end fragments for
generating congenic strains 2 and 8 in Fig. 2 should easily be
obtained in the F2 population and/or in the following steps. It
is, therefore, only necessary to consider further how to generate
recombinant fragments for the construction of the internal
substrains 3–7 in Fig. 2. For example an F2 animal carrying the
recombinant chromosome 2 in Fig. 1 is backcrossed to the
recipient strain, and crossovers at markers E, F, and G are
evaluated to generate the recombinant fragment used in con-
structing substrate 3 in Fig. 2. If the region spanned by
markers E, F, and G were (for example) 4 cM, then four
crossovers per 100 meioses would be expected in that region.
Thus screening 100 backcross animals should yield appropriate
recombinants for constructing substrate 3 in Fig. 2. Similarly
recombinant chromosome 3 in Fig. 1 is used to generate
substrate 4 of Fig. 2, etc.

Consideration should also be given as to how the statistical
analysis of the phenotypes (blood pressure) of the congenic
strains generated in Fig. 2 should proceed. All nine strains in
Fig. 2 can be compared by a one-way analysis of variance
(ANOVA) with blocks. For example, if one wanted 20 rats to
be phenotyped for each strain it would be difficult to raise and
take blood pressure on all 180 rats concomitantly. Ten statist-
tical blocks of 18 rats (2 rats per strain for 9 strains) could be
taken blood pressure on all 180 rats concomitantly. Ten statis-
tical comparisons are also appropriate. The latter can place the strains into subsets with
same blood pressure, and of course pair-wise strain com-
parisons. The former can place the strains into subsets with
comparable blood pressure QTL on chromosome 7 in Dahl rats by a 177kB congenic segment containing Cyp11b1.

Garrett MR, Rapp JP. Multiple blood pressure QTL on rat chromosome

Garrett MR, Rapp JP. Two closely linked interactive blood pressure
QTL on rat chromosome 5 defined using congenic Dahl rats.

REFERENCES

Dissecting quantitative trait loci into opposite blood pressure effects on
Dahl rat chromosome 8 by congenic strains. J Hypertens 22: 1495–1502,
2004.

2. Darvasi A. Experimental strategies for the genetic dissection of complex

3. Darvasi A, Soller M. Advanced intercross lines, an experimental popula-

4. Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and
cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286,
2005.

5. Garrett MR, Rapp JP. Defining the blood pressure QTL on chromosome
7 in Dahl rats by a 177kb congenic segment containing Cyp11b1. Mamm

6. Garrett MR, Rapp JP. Multiple blood pressure QTL on rat chromosome

7. Garrett MR, Rapp JP. Two closely linked interactive blood pressure
QTL on rat chromosome 5 defined using congenic Dahl rats.

8. Garrett MR, Zhang X, Dukhanina OI, Deng AY, Rapp JP. Two linked
blood pressure quantitative trait loci on chromosome 10 defined by Dahl

to the editor: ‘Mapping genes for hypertension using experimental models:
a challenging and unanticipated very long journey’”.

10. Gopalakrishnan K, Morgan EE, Yerga-Woolwine S, Farms P, Kuma-
is a risk factor linked to aberrant cardiomyocyte function, short-QT

Yerga-Woolwine S, Toland EJ, Schnackel W, Giovannucci DR, Joe B.
Defining a rat blood pressure quantitative trait locus to a <81.8 kb
congenic segment: comprehensive sequencing and renal transcriptome

12. Joe B, Saad Y, Dhindaw S, Lee NH, Frank BC, Achinike OH, Luu TV,
Gopalakrishnan K, Toland EJ, Farms P, Yerga-Woolwine S, Manic-
avasagam E, Rapp JP, Garrett MR, Coe D, Apte SS, Rankinen T,
Perusse L, Ehret GB, Ganesh SK, Cooper RS, O’Connor A, Rice T,
Weder AB, Chakravarti A, Rao DC, Bouchard C. Positional identifi-
cation of variants of Adamts16 linked to inherited hypertension. Hum Mol
Genet 20: 3899 (correction), 2011.

13. Joe B, Saad Y, Lee NH, Frank BC, Achinike OH, Luu TV,
Gopalakrishnan K, Toland EJ, Farms P, Yerga-Woolwine S, Manic-
avasagam E, Rapp JP, Garrett MR, Coe D, Apte SS, Rankinen T,
Perusse L, Ehret GB, Ganesh SK, Cooper RS, O’Connor A, Rice T,
Weder AB, Chakravarti A, Rao DC, Bouchard C. Positional identifi-
cation of variants of Adamts16 linked to inherited hypertension. Hum Mol

Springer-Verlag, 1975.

15. Lande R, Kruglyak L. Genetic dissection of complex traits: guidelines
for interpreting and reporting linkage results. Nat Genet 11: 241–247,
1995.

16. Lande R, Botstein D. Mapping mendelian factors underlying quanti-

Cicila GT. Substitution mapping in Dahl rats identifies two distinct blood
pressure quantitative trait loci within 1.12- and 125-mb intervals on

Moore KJ. Theoretical and empirical issues for marker-assisted breeding

19. Martinez O. Spurious linkage between markers in QTL mapping. Mol

20. Martinez O, Curnow R. Estimating the locations and sizes of the effects
of quantitative trait loci using flanking markers. Theor Appl Genet 85:

Jacob HJ, Cowley AW Jr. Multiple blood pressure loci on rat chromo-
some 13 attenuate development of hypertension in the Dahl S hypertensive

GRANTS

Funding from the National Heart Lung and Blood Institute of the National
Institutes of Health (HL-020176, HL-076709) to B. Joe is gratefully acknowl-
edged.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: J.P.R. drafted manuscript; J.P.R. and B.J. edited and
revised manuscript; J.P.R. and B.J. approved final version of manuscript; B.J.
prepared figures.

Author contributions: J.P.R. drafted manuscript; J.P.R. and B.J. edited and
revised manuscript; J.P.R. and B.J. approved final version of manuscript; B.J.
prepared figures.