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Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma
DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR,
Paré PD, Biswal S. NFE2L2 pathway polymorphisms and lung
function decline in chronic obstructive pulmonary disease. Physiol
Genomics 44: 754–763, 2012. First published June 12, 2012;
doi:10.1152/physiolgenomics.00027.2012.—An oxidant-antioxidant
imbalance in the lung contributes to the development of chronic
obstructive pulmonary disease (COPD) that is caused by a complex
interaction of genetic and environmental risk factors. Nuclear ery-
throid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in
the lung’s defense mechanism against oxidants. We investigated
whether polymorphisms in the NFE2L2 pathway affected the rate of
decline of lung function in smokers from the Lung Health Study
(LHS)(n � 547) and in a replication set, the Vlagtwedde-Vlaardingen
cohort (n � 533). We selected polymorphisms in NFE2L2 in genes
that positively or negatively regulate NFE2L2 transcriptional activity
and in genes that are regulated by NFE2L2. Polymorphisms in 11
genes were significantly associated with rate of lung function decline
in the LHS. One of these polymorphisms, rs11085735 in the KEAP1
gene, was previously shown to be associated with the level of lung
function in the Vlagtwedde-Vlaardingen cohort but not with decline
of lung function. Of the 23 associated polymorphisms in the LHS,
only rs634534 in the FOSL1 gene showed a significant association in
the Vlagtwedde-Vlaardingen cohort with rate of lung function decline,
but the direction of the association was not consistent with that in the
LHS. In summary, despite finding several nominally significant poly-
morphisms in the LHS, none of these associations were replicated in
the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of poly-
morphisms in the NFE2L2 pathway on the rate of decline of lung
function.

genetic polymorphism; nuclear erythroid 2-related factor 2; forced
expiratory volume in one second

CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) is the result
of a complex interaction of genetic and environmental risk
factors (51) and is characterized by irreversible airflow ob-
struction that results from chronic inflammation and tissue
remodeling. Although the main environmental risk factor for

COPD is cigarette smoking, longitudinal studies show that
only a minority of long-term cigarette smokers develops air-
flow limitation (15), suggesting that additional environmental
and/or genetic factors are important. Family and twin studies
have demonstrated that genetic factors play a key role in the
etiology of COPD (41, 49). Furthermore, genome-wide asso-
ciation studies of lung function (19, 46, 50, 58, 63), COPD (8,
47), and emphysema (32) have identified several putative loci
underlying these traits.

Several lines of evidence suggest that oxidant-antioxidant im-
balance in the lung plays a major role in the pathogenesis of
COPD. A measure of oxidative stress in the blood (thiobarbituric
acid-reactive substances) was shown to correlate inversely with
lung function in a population study (53). In addition, reactive
oxygen species released by circulating neutrophils play a role in
the development of airflow limitation (38). Furthermore, antioxi-
dant nutrients have been associated with preservation of lung
function (28, 42).

Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a
basic leucine zipper transcription factor that upregulates mul-
tiple genes involved in antioxidant and detoxification pathways
in response to exposure of the lungs to cigarette smoke (48).
Disruption of the Nfe2l2 gene in an emphysema-resistant
mouse model resulted in an early-onset and severe cigarette
smoke-induced emphysema, suggesting that NFE2L2 is a crit-
ical molecule in the lung’s defense mechanism against oxidants
(48). Oxidative stress causes NFE2L2 to translocate to the
nucleus following dissociation from its cytosolic inhibitor,
KEAP1 (30). We have shown (39) that the protein levels of
NFE2L2 and DJ1 (PARK7), a stabilizer of NFE2L2 (9), are
decreased in the lungs of patients with COPD. These data indicate
that NFE2L2 plays an important protective role against cigarette
smoke-induced COPD.

A previous study (66) of four promoter polymorphisms in
the NFE2L2 gene did not demonstrate any associations with
COPD in the Japanese population. In contrast, an NFE2L2
polymorphism (rs2364723) in intron 2 of the gene was asso-
ciated with level of lung function, although not with its rate of
decline, in a European population (54). Most recently, another
variant (rs6726395) in intron 2 of the NFE2L2 gene was
associated with rate of decline of lung function in the Japanese
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population and showed a significant interaction with smoking
status (40).

Based on these observations, we hypothesized that the rate
of decline of lung function in smokers with mild to moderate
airflow obstruction from the Lung Health Study (LHS) (1)
would be influenced by polymorphisms in the NFE2L2 path-
way. The LHS was a randomized trial of an antismoking
intervention and bronchodilator treatment in volunteer smokers
(1). We selected polymorphisms in the NFE2L2 gene in genes
that positively or negatively regulate the expression of NFE2L2
and in genes that are regulated by NFE2L2. We sought to
determine whether these polymorphisms are associated with
decline of lung function in smokers in the LHS and in a
replication set, the Vlagtwedde-Vlaardingen cohort.

MATERIALS AND METHODS

Study participants. The analyses were performed in a nested
case-control design that included participants from the LHS, a clinical
trial sponsored by the National Heart, Lung, and Blood Institute (1).
The LHS was conducted at 10 medical centers in North America, and
a total of 5,887 smokers, aged 35–60 yr, with spirometric evidence of
mild to moderate lung function impairment were recruited (1). Lung
function was assessed as forced expiratory volume in 1 s (FEV1) % of
predicted, i.e., FEV1 adjusted for age, height, sex, and race. Lung
function measurements in the LHS were performed using standard-
ized spirometry in accordance with the American Thoracic Society
guidelines (14), and the reference equations were those of Crapo and
coworkers (10) based on Caucasian subjects of northern European
descent in Salt Lake City.

Only participants who self-reported as non-Hispanic white were
investigated in this study. Participants of other ethnic groups such as
Hispanic white, African American, and Asian accounted for �5% of
the total LHS cohort and were excluded to avoid potential problems
due to population admixture.

Based on the rate of decline of lung function during a 5 yr
follow-up period, of the 3,216 continuing smokers in this study, we
selected non-Hispanic whites with a fast decline of FEV1 (n � 262)
and with no decline of FEV1 (n � 285). Arbitrary cut-off points of
FEV1% predicted/year decrease �3.0% and increase �0.4% were
used for rapid decliners and nondecliners, respectively. The demo-
graphic characteristics of the participants are shown in Table 1.

The Vlagtwedde-Vlaardingen cohort was utilized as an indepen-
dent replication cohort (54). This cohort contains 1,390 subjects with
8,159 FEV1 measurements completed during eight surveys who were
prospectively followed for 25 yr with FEV1 measurements performed
every 3 yr (following European Respiratory Society guidelines) (60).
Based on the rate of decline of lung function during this follow-up
period, we selected smokers (smoking history � 5 pack-yr) with a fast
decline of FEV1 (n � 233) and with no decline of FEV1 (n � 300).
Arbitrary cut off points of FEV1% predicted/year decrease �0%
and increase �7.4% were used for rapid decliners and non-
decliners, respectively. The characteristics of these subjects are
shown in Table 2.

Informed consent was obtained from all participants, and this
investigation received the approval of the relevant Research Ethics
Boards.

Gene/polymorphism selection and genotyping. We selected genes
involved in upregulation of NFE2L2 (APEX1, BRCA1, CARM1,
CREBBP, DPP3, EP300, JUN, KAT2B, NCOA3, PARK7, PPARG,
PRMT1, and SQSTM1) and downregulation of NFE2L2 (ATF3,
BACH1, BACH2, FOS, FOSL1, GNA12, KEAP1, MAF, MAFK, and
TP53). In addition, we selected genes known to be regulated by
NFE2L2 (GPX2, GSR, and SRXN1). We also genotyped single nucle-
otide polymorphisms (SNPs) in three genes: NFE2L2; NFE2L1, a mem-
ber of NFE2L family shown to act as a repressor of NFE2L2; and
NFE2L3, a member of NFE2L family with high homology to NFE2L2.
Finally, we selected a novel inflammatory gene (IRG1) as it was the most
highly upregulated gene in the lungs of mice with a deletion of Nfe2l2
after lipopolysaccharide (LPS) treatment (59).

Table 1. Distribution of demographic characteristics for subjects in the LHS

Nondecliners (n � 285) Fast Decliners (n � 262) P Value

Men/Women 186/99 152/110 0.0942
Age, yr 47.7 � 6.9 49.8 � 6.3 0.0002
Smoking history, pack-years* 38.5 � 18.3 43.2 � 19.4 0.0038
�FEV1/yr, % predicted pre† 1.1 � 0.7 �4.2 � 1.1 �0.0001
�FEV1/yr, % predicted post‡ 0.7 � 0.9 �3.4 � 1.3 �0.0001
Baseline FEV1, % predicted pre§ 75.5 � 8.1 72.5 � 9.0 �0.0001
Baseline FEV1, % predicted post� 79.7 � 7.9 74.7 � 9.2 �0.0001

Values are means � SD for continuous data. FEV1, forced expiratory volume in 1 s. *Number of packs of cigarettes smoked per day/number of years smoking.
†Change in lung function over a 5 yr period per year as % predicted FEV1 prebronchodilator. ‡Change in lung function over a 5 yr period per year as % predicted
FEV1 postbronchodilator (3 missing values in fast decliners group and 4 missing values in nondecliners group). §Lung function at the start of the Lung Health
Study (LHS) as measured by FEV1(%) predicted prebronchodilator. �Lung function at the start of the LHS as measured by FEV1(%) predicted postbronchodilator.

Table 2. Distribution of demographic characteristics for subjects in the Vlagtwedde-Vlaardingen cohort

Nondecliners (n � 300) Fast Decliners (n � 233) P Value

Men/Women 215/85 162/71 0.590
Age, yr 49.7 � 9.6 53.05 � 9.7 �0.0001
Smoking history, pack-years* 23.5 � 16.8 29.4 � 19.0 �0.0001
�FEV1/yr, % predicted pre† 0.9 � 0.7 �0.5 � 0.5 �0.0001
�FEV1/yr, % predicted post‡ NA NA
Baseline FEV1, % predicted pre§ 96.2 � 15.1 100.6 � 14.7 0.001
Baseline FEV1, % predicted post� NA NA

Values are means � SD for continuous data. *Number of packs of cigarettes smoked per day/number of years smoking. †Change in lung function over the
total period someone was in the study per year as % predicted FEV1 prebronchodilator. ‡Change in lung function over the total period someone was in the study
per year as % predicted FEV1 postbronchodilator. §Lung function at the start of the Vlagtwedde/Vlaardingen as measured by FEV1(%) predicted
prebronchodilator. �Lung function at the start of the Vlagtwedde/Vlaardingen as measured by FEV1(%) predicted postbronchodilator.
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Table 3. Nominally significant associations of polymorphisms with rate of decline of lung function in the LHS cohort

SNP Gene Genotype

Genotype Counts Unadjusted Analysis Adjusted Analysis‡

Nondecliners Fast Decliners P Value* Permuted P Value† Odds Ratio 95% Confidence Interval P Value

rs9573956 IRG1 AA 6 0 0.0006 0.0009 0.443 0.267–0.735 0.0016
AG 48 25
GG 231 237

rs3092794 NCOA3 AA 61 41 0.0351 0.0318 0.683 0.525–0.888 0.0044
AG 153 130
GG 71 89

rs6125042 NCOA3 CC 5 8 0.0517 0.0555 1.646 1.143–2.371 0.0074
TC 53 68
TT 227 184

rs9565305 IRG1 GG 5 0 0.0043 0.0030 0.522 0.325–0.840 0.0074
TG 51 31
TT 229 231

rs11085735 KEAP1 GG 261 223 0.0292 0.0496 2.043 1.206–3.461 0.0079
TG 23 34
TT 1 5

rs17708487 BACH2 AA 168 134 0.1657 0.1628 1.478 1.102–1.983 0.0091
AG 99 108
GG 16 19

rs8176199 BRCA1 AA 170 140 0.0348 0.0342 1.513 1.097–2.088 0.0116
AC 82 93
CC 8 17

rs634534 FOSL1 AA 59 45 0.0861 0.0872 0.733 0.567–0.948 0.0179
AG 145 121
GG 79 96

rs16882297 BACH2 CC 262 226 0.0369 0.0345 1.941 1.105–3.407 0.0209
GC 23 34
GG 0 2

rs5758223 EP300 AA 160 129 0.0648 0.0610 1.366 1.039–1.796 0.0255
AG 107 103
GG 18 30

rs4722029 GNA12 CC 10 14 0.0526 0.0555 1.427 1.043–1.952 0.0262
TC 77 92
TT 197 156

rs20552 EP300 AA 123 104 0.0634 0.0633 1.333 1.033–1.720 0.0273
TA 130 110
TT 32 48

rs1915919 PCAF CC 114 77 0.0281 0.0295 1.338 1.030–1.739 0.0292
TC 133 139
TT 38 46

rs176713 BACH2 AA 230 192 0.1166 0.1238 1.549 1.042–2.303 0.0305
AG 53 67
GG 2 3

rs6808352 PCAF GG 17 33 0.0242 0.0221 1.358 1.029–1.792 0.0307
TG 129 114
TT 139 115

rs427967 NCOA3 CC 174 184 0.0777 0.0819 0.700 0.504–0.971 0.0325
TC 100 70
TT 11 8

rs9344981 BACH2 CC 108 83 0.1763 0.1780 1.332 1.023–1.736 0.0334
TC 140 133
TT 37 46

rs4951627 ATF3 CC 16 7 0.0544 0.0552 0.708 0.514–0.976 0.0349
CG 92 70
GG 177 185

rs10183914 NFE2L2 CC 115 121 0.3724 0.3840 0.749 0.571–0.982 0.0365
TC 134 113
TT 36 28

rs9565304 IRG1 AA 215 215 0.0608 0.0625 0.656 0.442–0.974 0.0365
AG 62 45
GG 8 2

rs3846991 GNA12 CC 31 37 0.1178 0.1220 1.315 1.013–1.707 0.0394
CG 120 124
GG 134 101

Continued
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Tag SNPs and singletons that represent the genetic variation in
each gene were selected from resequencing data in the European
American Descent populations of the SeattleSNPs Program for
Genomic Applications (http://pga.mbt.washington.edu/) or HapMap
Project (http://hapmap.ncbi.nlm.nih.gov/) using the LDselect program
(4). LDselect parameter thresholds of r2 �0.8 and minor allele
frequencies �5% were used.

Genotyping of the LHS cohort was performed at the McGill
University and Génome Québec Innovation Centre (Montreal, Qué-
bec, Canada) using Illumina GoldenGate assays. Whole genome
amplified DNA was used as a template for the assays. We included
polymorphisms in the IL10 and IL10RA genes as quality controls to
assess the whole genome amplification, since these polymorphisms
have previously been genotyped in the LHS using genomic DNA as a
template (22). The genotypes generated from whole genome amplified
samples showed good concordance rates (98.1–99.6%) compared with
those from genomic samples (data from 9 SNPs in the IL10 and
IL10RA genes).

Of the 619 LHS samples that were genotyped, samples with call
rates �95% (n � 40) were removed from the analysis. Analyses were
further limited to non-Hispanic whites (n � 547) of whom 262 were
rapid decliners and 285 were nondecliners (Table 1). Of the 349 SNPs
that were chosen for genotyping, SNPs with call rates �90% (n �
37), SNPs that were monomorphic (n � 6), and SNPs that were not in
Hardy-Weinberg equilibrium (n � 8) were not analyzed. Thus, 298
polymorphisms were included in the analyses.

Genotyping of the Vlagtwedde-Vlaardingen cohort was performed
at K-Biosciences (Hoddesdon, UK) using their patent-protected KASPar
technology. SNPs were chosen for genotyping in this cohort if they
were associated with rate of decline of lung function in the LHS (P �
0.05). However, SNP rs6125042 (in NCOA3) was excluded from the
analysis due to a low call rate (71%) and lack of Hardy-Weinberg
equilibrium (P � 0.02).

Statistical analysis. For the LHS cohort, Hardy-Weinberg equilib-
rium tests were performed using the Arlequin population genetics
package (52), and linkage disequilibrium (LD) estimation was done
using the CubeX, cubic exact solutions program (16). All tests of
association were performed under an additive genetic model. The
outcome was a dichotomous variable i.e., fast vs. nondecline in lung
function (FEV1% predicted). The SimHap software (5) was used to
perform the multivariate logistic regressions adjusting for confound-
ing factors, i.e., age, sex, pack-years of smoking, and recruitment
center.

A Bonferroni correction for the total number of comparisons (n �
298) conducted in the LHS cohort may be overly conservative due to
LD between the SNPs. Therefore, we used the SNP Spectral Decom-
position (SNP SpD) approach to estimate the effective number of
independent marker loci (Meff) (45). With use of the SNP SpD
approach and the estimate of Meff provided by Li and Ji (36), the Meff

for this experiment was 203.5, and the experiment-wide significance
threshold required to keep the type I error rate at 5% was 0.000252.

In the analysis of the LHS, several of the polymorphisms had
small numbers in one or more of the cells, and therefore the
conventional �2-test may not be valid. To address this issue, the P
values were reassessed by the permutation procedure implemented
in UNPHASED (12), using 10,000 random permutations for each
SNP.

For the Vlagtwedde-Vlaardingen cohort, an additive genetic
model was used to test the association of polymorphisms with the
dichotomous outcome of fast vs. nondecline in lung function
(FEV1% predicted). The SPSS (version 16) software was used to
perform the analyses adjusting for sex and pack-years. Hardy-
Weinberg equilibrium tests were performed with Haploview (ver-
sion 4.1) (2).

RESULTS

LHS cohort. The most significant associations of the candi-
date polymorphisms with rate of decline of lung function in the
LHS group under the additive model are shown in Table 3. We
found previously unreported associations of polymorphisms in
11 genes in the NFE2L2 pathway. The odds ratios for poly-
morphisms in these genes ranged from 0.44 to 0.76 for pro-
tective alleles and from 1.31 to 2.04 for risk alleles. The most
significant associations were in the IRG1, NCOA3, and KEAP1
genes. Several of these associations were also nominally sig-
nificant (P � 0.05) when analyzed by the permutation proce-
dure implemented in UNPHASED (12) (Table 3).

The majority of polymorphisms (14/23) associated with rate
of decline of lung function were tagging SNPs. None of these
SNPs were of obvious functional significance although a syn-
onymous polymorphism in the EP300 gene (rs20552) was in a
highly conserved region.

Although 23 polymorphisms showed nominal association
with rate of decline of lung function (P � 0.05) under the
additive model (Table 3), none of these associations re-
mained significant after correction using the effective num-
ber of independent marker loci. The estimated effective
number of independent SNPs (n � 203) is lower than the
actual number (n � 298) due to the moderate level of LD
between the polymorphisms. For example, the LD between
the SNPs associated with lung function is shown for the
LHS data in Fig. 1.

Vlagtwedde-Vlaardingen cohort. We attempted to replicate
the associations observed in the LHS cohort using the
Vlagtwedde-Vlaardingen cohort. Of the 23 associated SNPs,
one polymorphism in KEAP1 (rs11085735) was previously
genotyped in this cohort (54) and another in NFE2L2
(rs10183914) was in LD (r2 � 0.96) with a previously geno-

Table 3.—Continued

SNP Gene Genotype

Genotype Counts Unadjusted Analysis Adjusted Analysis‡

Nondecliners Fast Decliners P Value* Permuted P Value† Odds Ratio 95% Confidence Interval P Value

rs831172 IRG1 AA 93 99 0.2760 0.2760 0.760 0.584–0.990 0.0422
AG 141 126
GG 51 36

rs2143491 NCOA3 CC 115 127 0.1535 0.1520 0.758 0.579–0.993 0.0444
TC 134 110
TT 35 25

The odds ratios are for a rapid rate of decline and the reference is the wild-type homozygote genotype. SNP, single nucleotide polymorphism. *Likelihood
ratio �2-test. †P value using 10,000 random permutations. ‡Association under an additive genetic model adjusted for age, sex, pack-years of smoking, and
recruitment center.
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typed SNP (54). The LD between the SNPs in this cohort is
shown in Fig. 2. All the polymorphisms were in Hardy-
Weinberg equilibrium (P � 0.12). Associations of the SNPs
with rate of decline of lung function are shown in Table 4.
Only SNP rs634534 in the FOSL1 gene showed a significant
association in the Vlagtwedde-Vlaardingen cohort (P �
0.016), but the direction of the association was reversed com-
pared with the LHS.

DISCUSSION

We investigated whether polymorphisms in NFE2L2
pathway genes were associated with the rate of decline of
lung function in the LHS cohort. NFE2L2 is a master
regulator of the antioxidant and detoxification pathways,
and therefore the genes that we investigated are excellent
candidates for COPD susceptibility loci. The four genes that
showed the most significant associations in the LHS were
IRG1, NCOA3, KEAP1, and BACH2. All these associations
with rate of decline of lung function are novel, although we
previously demonstrated that the polymorphism in the
KEAP1 gene (rs11085735) was associated with cross-sec-
tionally determined level of lung function (54).

Irg1 was most highly upregulated in the lungs of Nfe2l2�/�

mice following LPS treatment (59). Irg1 was transcriptionally
upregulated in LPS-stimulated macrophages (3, 34) and
showed marked differences in expression in Nfe2l2�/� and
Nfe2l2�/� mice after administration of LPS and exposure to
cigarette smoke (59). Four polymorphisms in the IRG1 gene

showed significant associations with lung function decline
in the LHS cohort. Three of the polymorphisms were in
strong LD with each other (r2 � 0.68 – 0.82), but the other
SNP (rs831172) showed an independent association.

Four SNPs in the NCOA3 gene were nominally associated with
rapid decline of lung function. There was strong LD (r2 � 0.60)
between two of these variants (rs3092794 and rs2143491),
but the remaining two SNPs were likely independent asso-
ciations. NCOA3 is a member of the p160/steroid receptor
coactivator family. NCOA3 associates with the transcription
factor CREB binding protein and has histone acetyltrans-
ferase activity (6). NCOA3 regulates several transcription
factors (17, 35, 62, 64) and acts as a positive regulator of
NFE2L2 expression (37).

KEAP1 is a key inhibitor of NFE2L2 (30, 61). NFE2L2 is
rapidly ubiquitinated and degraded by the proteasome under
basal conditions, and this degradation is promoted by KEAP1.
However, binding of KEAP1 to compounds that activate
NFE2L2 (oxidants and electrophiles) through its cysteine res-
idues leads to the release and nuclear translocation of NFE2L2
and subsequent induction of NFE2L2-regulated genes (11, 13,
25, 31). We found that a polymorphism in the KEAP1 gene
(rs11085735) was associated with rate of decline of lung
function in the LHS in the present study and previously with
level of lung function in the Vlagtwedde-Vlaardingen cohort
(54). Taken together with the functional role of the protein,
these data suggest a role for KEAP1 as a novel candidate gene
for COPD.

Fig. 1. Linkage disequilibrium between the polymorphisms associated with lung function in the Lung Health Study.

Fig. 2. Linkage disequilibrium between the polymorphisms in the Vlagtwedde-Vlaardingen cohort.
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Table 4. Associations of polymorphisms with rate of decline of lung function in the Vlagtwedde-Vlaardingen cohort, under
an additive genetic model adjusted for sex and pack-years of smoking

SNP Gene Genotype

Genotype Counts

Odds Ratio 95% Confidence Interval P ValueNondecliners Fast Decliners

rs9573956 IRG1 AA 0 1 1.279 0.772–2.120 0.340
AG 35 32
GG 260 196

rs3092794 NCOA3 AA 59 45 0.915 0.703–1.190 0.507
AG 152 112
GG 67 64

rs6125042 NCOA3 CC 4 2 0.978 0.603–1.584 0.927
TC 40 25
TT 176 120

rs9565305 IRG1 GG 0 1 1.188 0.723–1.952 0.496
TG 38 32
TT 251 191

rs11085735 KEAP1 GG 266 205 1.133 0.642–1.999 0.667
TG 27 24
TT 1 0

rs17708487 BACH2 AA 168 116 1.198 0.903–1.591 0.211
AG 102 94
GG 19 16

rs8176199 BRCA1 AA 172 126 1.137 0.856–1.511 0.375
AC 98 82
CC 17 18

rs634534 FOSL1 AA 45 49 1.374 1.060–1.781 0.016
AG 147 119
GG 102 57

rs16882297 BACH2 CC 261 211 0.629 0.331–1.198 0.158
GC 28 15
GG 1 0

rs5758223 EP300 AA 157 120 0.850 0.638–1.132 0.266
AG 99 88
GG 29 9

rs4722029 GNA12 CC 12 24 1.206 0.908–1.603 0.196
TC 106 67
TT 172 131

rs20552 EP300 AA 126 90 0.965 0.744–1.252 0.789
TA 126 114
TT 43 23

rs1915919 PCAF CC 109 83 0.952 0.736–1.231 0.706
TC 127 108
TT 47 31

rs176713 BACH2 AA 224 156 1.367 0.950–1.967 0.092
AG 64 65
GG 4 4

rs6808352 PCAF GG 31 18 0.920 0.700–1.209 0.549
TG 115 96
TT 138 109

rs427967 NCOA3 CC 187 160 0.830 0.586–1.173 0.291
TC 84 57
TT 8 5

rs9344981 BACH2 CC 91 70 0.970 0.758–1.241 0.806
TC 132 111
TT 68 45

rs4951627 ATF3 CC 14 9 1.093 0.800–1.492 0.577
CG 80 72
GG 194 141

rs13001694† NFE2L2 CC 95 82 0.878 0.678–1.137 0.323
TC 145 116
TT 52 32

rs9565304 IRG1 AA 241 178 1.253 0.819–1.918 0.298
AG 48 47
GG 2 1

rs3846991 GNA12 CC 32 42 1.221 0.943–1.582 0.130
CG 142 98
GG 114 84

Continued
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There were four SNPs in the BACH2 gene that were asso-
ciated with decline in lung function. Interestingly, there was no
strong LD between any of these polymorphisms, suggesting
that the associations were independent. BACH2 is a transcrip-
tion factor that plays a key role in the regulation of nucleic
acid-triggered antiviral responses in human cells (26) and is
highly expressed in B cells (43). BACH2 acts as a functional
antagonist of NFE2L2 (27).

We were unable to replicate the associations observed in
the LHS cohort using the Vlagtwedde-Vlaardingen cohort.
Of the 23 associated SNPs, only rs634534 in the FOSL1
gene showed a significant association in the Vlagtwedde-
Vlaardingen cohort, but the direction of the association was not
consistent with that in the LHS. SNP rs11085735 in the KEAP1
gene showed significant association in the Vlagtwedde-Vlaardin-
gen cohort as previously reported (54), but this association was
with the level lung function and not with decline of FEV1.

The lack of replication may be related to the differences
in recruitment between the two studies. The LHS selected
mild to moderate COPD patients and the Vlagtwedde-
Vlaardingen cohort was from the general population. It is
possible that the genetic factors that influence lung function
decline in COPD patients could be different than those in
the general population. In addition, despite the moderate
sample sizes of both of the cohorts lack of replication may
be due low power to detect risk alleles of small effect. To
address this aspect of the study we have performed power
analyses for both cohorts (Fig. 3). We have good power to
detect associations with odds ratios �2.0 and reasonable
power for common variants with odds ratios �1.75 in the
LHS. We had higher power to detect associations in the
Vlagtwedde-Vlaardingen cohort due to the lower number of
comparisons. Nevertheless, odds ratios of genetic associa-
tions with COPD are often �1.5, and therefore lack of
power needs to be considered when interpreting these data.

Although we did not find replication of the NFE2L2 path-
way genes studied in our cohorts, there is evidence of the role
of this pathway in the development of COPD. SNPs in classical
NFE2L2 targets such as glutathione S-transferase (GST) genes,
NAD(P)H quinone oxidoreductase (NQO1), glutamate-cys-
teine ligase catalytic subunit (GCLC), and heme oxygenase-1
(HMOX1) have previously been shown to be associated with
COPD (7, 18, 20, 21, 29, 33, 44, 55, 56, 65, 69). In contrast,
other studies failed to find association of these genes with
COPD-related phenotypes (23, 24, 57, 67, 68).

In summary, despite finding several nominally significant
polymorphisms in the LHS, none of these associations were
replicated in the Vlagtwedde-Vlaardingen cohort, indicating
lack of effect of polymorphisms in the NFE2L2 pathway on the
rate of decline of lung function. Alternatively these polymor-
phisms may have an effect, but our study is underpowered to
detect these effects. Combining these data in subsequent meta
analyses may be fruitful to more rigorously test their effects.
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(	 � 0.002174, bottom) for 2-sided tests under an additive model of
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Table 4.—Continued

SNP Gene Genotype

Genotype Counts

Odds Ratio 95% Confidence Interval P ValueNondecliners Fast Decliners

rs831172 IRG1 AA 106 78 1.135 0.873–1.476 0.346
AG 146 114
GG 37 37

rs2143491 NCOA3 CC 100 88 0.978 0.747–1.280 0.871
TC 156 106
TT 35 31

The odds ratios are for a rapid rate of decline, and the reference is the wild-type homozygote genotype. †In almost complete linkage disequilibrium (r2 � 0.964)
with SNP rs10183914 according to HapMap.
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