Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation

Adeel Safdar,1,2 Nicholas J. Yardley,2 Rodney Snow,2 Simon Melov,4 and Mark A. Tarnopolsky2

Departments of 1Kinesiology and 2Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada; 3School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia; and 4Buck Institute for Aging Research, Novato, California

Submitted 14 July 2007; accepted in final form 15 October 2007

CrM supplementation has a number of biochemical and physiological effects and enhances muscle performance in humans (89). Intracellular phosphocreatine (PCr) functions as an energy buffer to prevent ATP depletion in the skeletal muscle, especially during short-duration repetitive high-intensity exercise bouts (22, 43, 75, 89). Following the intake of 20 g CrM/day for 4–7 days (2, 29, 33) or 3 g CrM/day for 4–12 wk (4, 46, 91, 94), skeletal muscle total creatine and PCr increase by 10–20%. Short-term CrM supplementation increases muscle force and/or power (2, 3, 7, 8, 10, 18, 29, 59, 96), whereas chronic CrM supplementation in conjunction with weight training increases maximal muscle strength and power, fat-free mass (FFM), muscle fiber size, total body water, and total body weight (47, 91, 94) compared with placebo. The increase in FFM and total body weight is partly due to fluid retention in myocytes caused by the osmotic potential of high intracellular CrM abundance (45, 47, 60). Whether the aforementioned phenotypic effects are due to energy buffering, physiochemical attributes of the compound, cell volume regulation, or CrM supplementation’s direct influence on cellular metabolism through changes in gene expression remains unclear.

Studies have found significant increases in total body water in men after both short-term (106) and long-term (47) CrM supplementation, and that this acute increase in fluid volume is limited to the intracellular compartment only (106). Our group has shown that 9 days of CrM supplementation decreased whole body protein breakdown and leucine oxidation in young men (66), and this was directionally similar to studies infusing a hyposmotic solution to induce cell swelling (6, 34). Consequently, we hypothesized that CrM supplementation would induce cell swelling, which in turn would activate downstream cell volume-sensitive signaling cascades, and affect overall cellular metabolism (66). If cell volume changes modulate the anti-proteolytic effects of CrM supplementation, then this should involve the intrinsic and/or extrinsic signaling kinases.

Presently, little is known about the global changes in gene expression following short-term CrM supplementation in human skeletal muscle, independent of confounding factors such as exercise or disuse atrophy models. CrM supplementation enhances satellite cell differentiation in vitro (93) and satellite cell mitotic activity during compensatory hypertrophy in rat skeletal muscle (16). These observations are consistent with the results from an in vivo study showing an increase in the protein content of the myogenic transcription factors myogenic regulatory factor-4 (MRF4) and myogenin after recovery from cast-induced atrophy in the skeletal muscle of young subjects supplemented with CrM (36). Also, CrM supplementation in conjunction with strength exercise training increases satellite cell number, myonuclei concentration (63), and type II muscle fiber area (94).

Given the emerging interest in CrM supplementation in the management of neuromuscular disorders, including amyotrophic lateral sclerosis (44), Huntington’s disease (56), Parkinson’s disease (55), Alzheimer’s disease (9), and muscular dystrophies (13, 85, 87, 88), our aim was to elucidate potential cellular and molecular mechanisms that underlie its therapeutic efficacy. The objectives of this study were 1) to examine the intracellular global gene expression in human skeletal muscle following 10 days of CrM supplementation using cDNA microarray analysis, and 2) to evaluate the effect of short-term CrM supplementation on targeted mRNA expression and pro-
tein content of kinases associated with cell volume regulation. In the present study, we analyzed muscle biopsies of the vastus lateralis from young men following 10 days of supplementation with placebo or CrM, without the superimposition of acute exercise.

MATERIALS AND METHODS

Subjects

Twelve young, healthy, nonsmoking, and nonobese men (age, 26 ± 3 yr; weight, 76 ± 9 kg; height, 178 ± 11 cm; regular physical activity ≥2× per wk) participated in the study. Before the study, potential subjects completed a health questionnaire to assess their health and fitness. All subjects provided written consent before their participation. The study was approved by the Hamilton Health Sciences Human Research Ethics Board and conformed to the guidelines outlined in the Declaration of Helsinki.

Experimental Protocol

Supplementation and tissue collection. Following a block randomized, placebo-controlled, crossover, double-blind design, six participants consumed a placebo (PL; 75 g of dextrose), while the other six participants took a commercially available isoenzyme supplement predominantly containing CrM (CELL-Tech; 10 g of CrM, 75 g of potassium, 60 mg of sodium, 70 mg of magnesium, and 20 mg of calcium; Iovate, Mississauga, ON, Canada) under the direct supervision of a research assistant. Subjects consumed the CrM supplement (CELL-Tech) for a total of 10 days: 10 g/day twice daily for the first 3 days (loading phase), followed by 5 g/day for the remaining 7 days (maintenance phase). Both CrM and PL had identical grape flavoring and were mixed into cold water. Because of direct supervision, compliance was 100% with supplement consumption. Following a 28-day washout period, which is sufficient for muscle PCr concentration to return to basal level (24, 39), subjects crossed over to consume the alternate supplement for 10 days. Four-day diet records were acquired from all subjects during the last 4 days of both treatments and were analyzed for daily total calorie and macronutrient composition using Nutritionist V (First Data Bank, San Bruno, CA) (86). FFM and body fat percentage were determined using dual-energy X-ray absorptiometry (QDR-1000W; Hologic, Waltham, MA) as previously described (86). Total body water was measured using bioelectric impedance analysis (BIA-101A; RJL Systems, Mt. Clemens, MI) (32).

On the last day of supplementation for both treatments, we collected muscle biopsies of the vastus lateralis that were taken from the same leg and were separated by ~6 cm to minimize the potential effect of the biopsy on gene expression (62). The sampling site was randomized with respect to the proximal vs. distal incision site. We took ~150 mg of wet muscle from each biopsy after quickly dissecting it of fat and connective tissue and sectioned the sample into four pieces. Two pieces of ~30 mg were immediately placed in separate RNase-free cryovials, flash-frozen in liquid nitrogen, and stored at −86°C until analysis (RNA and total protein extraction). A third piece of ~80 mg was lyophilized overnight and stored at −86°C for subsequent analysis of total creatine (TCr) content. The last piece of ~10 mg was mounted in Tissue-Tek optimal cutting temperature (OCT) compound embedding medium (EMS, Hatfield, PA) prechilled in isopentane that was cooled in liquid nitrogen, snap frozen, and stored at −86°C until subsequent analysis.

Biochemical Analyses

Muscle samples frozen in liquid nitrogen were lyophilized, powdered, and extracted in 0.5 M perchloric acid-1 mM EDTA and neutralized using 2 M KHCO3, as previously described (84). Extracts were analyzed for TCr using a fluorometric enzymatic method described previously by our group (86). The intra-assay coefficient of variation (CV) was 3.7% for TCr.

Histochemical Analyses

The OCT-embedded biopsy samples were serially sectioned (7-μm thick) and were stained for myosin ATPase activity as previously described (86). A total of 150–500 fibers were available for analysis from each subject. Fiber analyses were performed using image analysis software (Image Pro Plus, Media Cybernetics, Silver Spring, MD) interfaced with a microscope (Olympus BX60, Melville, NY) and a digital camera (SPOT Diagnostics Instruments, Sterling Heights, MI). The intra-assay CVs were 1.5 and 2.6% for the analysis of percent total fiber area and mean fiber area, respectively.

RNA Analysis

RNA extraction. The total RNA was extracted from the skeletal muscle biopsy followed by DNase I treatment as described previously in detail by our group (53). We assessed total RNA quality by measuring the size distribution on an Agilent Bioanalyzer (1.0–1.5 kb; Agilent Technologies, Santa Clara, CA) and by measuring the spectrophotometric 260/280 ratio (>1.8).

Microarray Analyses

For analyses of CrM-induced global gene expression changes, muscle from all the participants (n = 12) from both phases of the study (PL and CrM) were analyzed to highlight a paired/repeated measures comparison. The study design (randomized, crossover, within subject) permitted the comparison of the CrM with the PL data for individual subjects, i.e., within-subject comparison. This allowed the examination of each individual subject’s response to CrM vs. PL supplementation. Such a design minimizes interindividual variability in mRNA expression and recognizes that genetic influences remain identical on both treatments. This is a more powerful approach than comparing pooled data for all subjects during PL supplementation vs. pooled data for all subjects during CrM supplementation.

Two micrograms of total RNA were converted to cDNA and labeled with either cyanine-3 (Cy3; CrM condition) or Cy5 (PL condition) fluorescent dyes in preparation for in-house microarray analyses at the Genomics Facility of the Buck Institute for Age Research, as previously described (54). Detailed microarray experimental design and conditions are also found online on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7877). The total number of analyzable genes per array after removal of PCR failures and genes with nondetectable expression was ~7,500 genes.

RT and real-time PCR. We performed RT (Roche Applied Science, Laval, QC, Canada) and real-time PCR on an iCycler real-time PCR machine (Bio-Rad Laboratories, Hercules, CA) using SYBR Green chemistry, as described previously for cDNA microarray validation and targeted mRNA expression analysis (54). For these analyses, we used β2-microglobulin as a housekeeping gene, since our intervention did not influence the β2-microglobulin mRNA content in the skeletal muscle (data not shown). All samples were run in duplicate simultaneously with “no RNA” and RT negative controls. In addition, the melting point dissociation curve generated by the instrument was used to confirm the specificity of the amplified product. Please refer to Supplemental Table S1 for primer sequences used for real-time PCR (supplemental data are available at the online version of this article).

Kinexus Protocol

The whole lysate protein samples were analyzed by Kinetworks KPKS 1.0 Protein Kinase screen (Kinexus Bioinformatics, Vancou-
ver, BC, Canada) as described previously (69, 70). Briefly, ~30 mg of skeletal muscle from each subject were lysed in 750 μl of homogenization buffer (20 mM MOPS, 2 mM EGTA, 5 mM EDTA, 30 mM sodium fluoride, 40 mM β-glycerophosphate, 20 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 1 mM PMSF, 3 mM benzamidine, 5 μM pepstatin A, 10 μM leupeptin, pH 7.2). The lysates were centrifuged for 10 min at 4°C at 600 g. Bradford assay was used to quantify the protein content. The samples were boiled in Laemmli sample buffer and shipped to Kinexus as per the company’s instructions (http://www.kinexus.ca). Subjects 1–6 for the CrM condition were pooled together and analyzed against themselves for the PL condition, and the same was done for the second pool containing subjects 7–12, due to the limited sample. The Kinetworks analysis involves resolution of a single pool of lysed samples by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent immunoblotting with panels of up to three primary antibodies per channel in a 20-lane Immunetics multiblotted, for the identification and activation assessment of a network of 78 protein kinases. The trace quantity units are arbitrary, based on the intensity of enhanced chemiluminescent fluorescence detection for target immunoreactive proteins recorded with a Fluor-S Multimager and quantified using Quantity One software (Bio-Rad). The reproducibility of these signal transduction protein screens was within 15%.

Statistical Analysis

Anthropometric measurements, muscle composition, and dietary data were analyzed using a Student’s paired t-test. We used a one-tailed test when analyzing TCr concentration and body composition, because we a priori hypothesized that CrM supplementation would increase TCr concentration, FFM, total body water, and body weight but decrease percent body fat. For all other analyses, we used a two-tailed test. A P value ≤0.05 was considered statistically significant. Data are presented as means ± SD.

We analyzed microarray data using the significance analysis of microarrays (SAM; v.1.21) to identify statistically significant differential global gene expression in the CrM vs. PL group, using a false discovery rate of <5% (54). Real-time PCR data for both global and targeted gene expression were analyzed using a paired t-test on the linear 2^-ΔΔCt data set (where Ct is threshold cycle) (51). We analyzed Kinetworks KPKS 1.0 Protein Kinase screen data for protein content using a paired t-test on corrected band intensities and expressed it as fold change (CrM vs. PL).

RESULTS

Body Composition, Dietary Analysis, and Muscle Fiber Characteristics

Percent body fat was similar between the two interventions. CrM supplementation increased FFM by 1.6% (P = 0.03), total body water by 2.2% (P = 0.04), and body weight by 2.6% (P = 0.002) (Table 1). The total energy, carbohydrate, and protein intake of the participants did not change over the course of the study (Table 1). CrM supplementation increased total muscle creatine content by 14% (P = 0.0009), indicating excellent compliance (Table 2). Short-term CrM supplementation also resulted in a nonsignificant increase in type I, type IIa, and type IIx fiber area by ~9, 5, and 4%, respectively (Table 2).

<table>
<thead>
<tr>
<th>Table 2. Muscle fiber characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>TCr, mmol/kg dry mass</td>
</tr>
<tr>
<td>%Type I fiber</td>
</tr>
<tr>
<td>%Type IIa fiber</td>
</tr>
<tr>
<td>%Type IIx fiber</td>
</tr>
<tr>
<td>Type I fiber area, μm²</td>
</tr>
<tr>
<td>Type IIa fiber area, μm²</td>
</tr>
<tr>
<td>Type IIx fiber area, μm²</td>
</tr>
</tbody>
</table>

Values are means ± SD; n = 12. TCr, total creatine content.

cDNA microarray data showed that short-term CrM supplementation significantly upregulated the expression of 216 genes in the skeletal muscle of healthy young men (to view the complete data deposited in the NCBI Gene Expression Omnibus, visit http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78777). The mean fold increase in the mRNA for these genes was 1.7 ± 0.4-fold, with a minimum increase of 1.3-fold (activated RNA polymerase II transcription cofactor-4) and a maximum increase of 5.0-fold (sphingosine kinase-1) (Supplemental Table S2). We used real-time PCR to randomly confirm the expression of eight of the mRNA species whose expression changed by >2.0-fold in the cDNA microarray analyses (Fig. 1). In addition, CrM supplementation significantly downregulated the expression of 69 genes, with a mean decrease of 0.7 ± 0.1-fold (a minimal repression of 26% in C2H2 type zinc finger protein and a maximal repression of 70% in Frizzled-related protein) (Supplemental Table S3).

CrM Supplementation Altered the Protein and mRNA Contents of Skeletal Muscle Kinases

The Kinetworks KPKS 1.0 Protein Kinase screen of 78 protein kinases showed that short-term CrM supplementation significantly upregulated the protein content of three protein-serine/threonine kinases, i.e., p38 MAPK, ERK6, and protein kinase Bα (PKBa/Akt1), in the skeletal muscle of healthy young men (mean increase of 2.8 ± 1.2-fold) (Supplemental Table S4). Also, there is a strong trend for an increase in the protein content of three other kinases [HPK1, focal adhesion kinase (FAK), and CDK9] with CrM supplementation (mean increase of 5.6 ± 2.4-fold). We also used real-time PCR to confirm the increase in the mRNA content in four of the aforementioned upregulated kinases (p38 MAPK, ERK6, PKBa/Akt1, and FAK) in the skeletal muscle of subjects supplemented with CrM (Fig. 2).

DISCUSSION

In the present study, we observed an increase in total muscle creatine content, FFM, total body water, and body weight in healthy young men after 10 days of CrM supplementation with
Protein Kinase screen to investigate differential gene expression in the skeletal muscle of men supplemented with CrM vs. PL. We found that CrM supplementation increased mRNA expression and protein content of genes involved in osmosensing and signal transduction [integrin-1 (ITGA1), FAK, wingless-type MMTV integration site family member-2 (WNT2), GNAS complex locus (GNAS), and calcium-sensing receptor (CASR)], cytoskeleton remodeling [collagen (type V, α3; COL5A3), filamin A (FLNA), Rho GTPase activating protein-8 (ARHGA8), and peripherin (PRPH)], protein and glycogen synthesis regulation (PKBa/Akt), satellite cell proliferation and differentiation [sphingosine kinase-1 (SPHK1), PKBa/Akt, p38 MAPK, ERK6, and megakaryoblastic leukemia-1 (MKL1)], DNA replication and repair [replication initiator-1 (REPIN1), histone-1 (HIST1H2BK), and tyrosyl-DNA phosphodiesterase I (TDP1)], RNA transcription control [human transcription factor Dp-2 (TFDP1)], CCAAT/enhancer binding protein-ζ (CEBPZ), PRP8 pre-mRNA processing factor-8 homolog (PRRP8), exonuclease NEF-sp, ROD1, RNA binding motif protein-4 (RBM4), and matrin-3 (MATR3)], cell survival [Fas apoptotic inhibitory molecule-2 (FAIM2) and angiopoietin-like-4 (ANGPTL4)], and other miscellaneous processes (Supplemental Tables S2 and S4). We are the first to report this novel differential gene expression in the skeletal muscle with 10 days of CrM supplementation, a response that appears to reflect a homeostatic adaptation to changes in cellular osmolarity.

CrM Supplementation Causes an Increase in FFM, Total Body Water, and Body Weight

Short-term CrM supplementation significantly increased FFM, total body water, and body weight, confirming previous research (45, 95, 106). It should be noted that the commercial CrM product (CELL-Tech) used in this study contained additional dietary constituents that have been previously shown not to provide any additional response to changes in body mass, body composition, maximal strength, and power output beyond those solely attributed to CrM supplementation (46). The primary purpose of these additional dietary constituents (i.e., dextrose, α-lipoic acid, ascorbic acid, etc.) with CrM supplementation was to enhance muscle TCr content gains in the short term compared with the ingestion of CrM alone (11). The increase in FFM and body weight following CrM supplementation may be due, at least in part, to water retention as previously suggested (106). These gains are attributed to the acute increase in fluid volume, limited to the intracellular compartment only, due to an osmotic load caused by cellular CrM accumulation (106). We speculate that the increase in cellular TCr and osmolarity following creatine supplementation leads to an increase in cell volume. Little is known about the molecular events following short-term CrM supplementation in human skeletal muscle, independent of exercise or disuse atrophy models.

Cell swelling has been identified as an anabolic proliferative signal (67, 72). We have previously shown that 9 days of CrM supplementation (similar to the present protocol) decreases whole body proteolysis and leucine oxidation in young men (66), and these results were directionally similar to studies showing cell swelling after infusion of a hypoosmotic solution (6, 34). In vitro studies have also described the stimulating effect of increased cell volume on glycogen synthesis (1, 72). On the basis of research from our group and others, we hypothesized that CrM-mediated cell swelling would activate cell volume-sensitive signaling cascades to adapt to the intracellular and extracellular changes in osmolarity by activating...
significance for autistic children. GNAS encodes the
retically, CrM supplementation may hold potential therapeutic
(27) and increased brain choline-to-creatine ratio (80). Theo-
tistical children have associated the severity of pathology with
prototypical pervasive development disorder. Studies with au-
suggested that WNT2 is a strong candidate gene for autism, a
patterning during embryogenesis (98). Wassink et al. (99)
developmental processes, including regulation of cell fate and
ments to membrane glycoproteins by interacting with integrins,
transmembrane receptor complexes, and second messengers
fibrillar collagens that plays a role in muscle development and
arrangements have been previously implicated as a result of
(COL5A3), FLNA, ARHGAP8, and PRPH. Cytoskeleton re-
protein that activates a phosphatidylinositol-calcium second
mRNA with CrM supplementation. Both ITGA1 and FAK play
vital role in osmosensing, especially during the earlier phase
of cell swelling, by promoting cell adhesion to the extracellular
matrix and inducing intracellular signal transduction (77, 97).
We also observed that CrM supplementation activates genes
that constitute the cell signal transduction network including
WNT2, GNAS, and CASR. In addition, CrM supplementation
dowregulates the expression of frizzled-related protein (FRZB), a negative regulator of WNT2 signaling (37).

We observed a significant upregulation of ITGA1 and FAK
mRNA with CrM supplementation. Both ITGA1 and FAK play
a vital role in osmosensing, especially during the earlier phase
of cell swelling, by promoting cell adhesion to the extracellular
matrix and inducing intracellular signal transduction (77, 97).

We observed a significant increase in PKBa mRNA (2.1-
fold) and protein (4.2-fold) content in the skeletal muscle with
CrM supplementation. PKBa is a serine-threonine protein ki-
nase and is involved in upregulating general protein synthesis
via an increase in the eukaryotic initiation factor-2B (31, 100).
This finding, together with our previous observation that CrM
supplementation decreases whole body proteolysis and amino
acid oxidation in healthy young men (66), indicates a trend
toward a net protein accretion.

Creatine supplementation increases glycogen content, but
the cellular mechanisms supporting this observation are un-
clear (65). Creatine-fed rats increase muscle glycogen stores
because of the upregulation of GLUT4 mRNA expression via
AMP-activated protein kinase-dependent pathway (42), prob-
ably because of an increase in fasting plasma insulin levels
(74). In contrast, Op’t Eijnde et al. (64) reported that 5 days of
creatine supplementation did not increase GLUT4 expression
in rats. In humans, creatine supplementation prevented a de-
crease in muscle GLUT4 protein content during 2 wk of
immobilization and increased it during a subsequent 10 wk of
rehabilitation training in healthy subjects (65). Recently, van
Loon et al. (92) observed that creatine supplementation in men
increased skeletal muscle glycogen storage but had no effect on
GLUT4 mRNA and protein content. Similarly, in our microar-
ray analysis, we also observed no change in GLUT4 (SLC2A4;
AA978042) mRNA expression (P = 0.26) with CrM supple-
mentation (0.97-fold vs. PL). However, we observed a 21%
decrease (0.79-fold) in both skeletal muscle phosphofructoki-
nase and glycogen phosphorylase, but not hexokinase, mRNA
content following CrM supplementation (refer to http://www.
with the GLUT4 data, these observations indicate that the intra-
cellular glucose available for cellular functions is being directed
toward glycogen accretion through a decrease in glycogen break-
down and glycolysis. This is in accordance with the observed
increase in the potential energy provided by the phoshagen
pathway (TCr content) and the subsequent lower dependence on
glycolysis to furnish immediate energy sources.

In addition to protein synthesis, PKBa positively regulates
glycogen synthesis by deactivating glycogen synthase kinase-
β, thus increasing glycogen synthase activity (31). It is
suggested that PKBa associates with GLUT4-containing vesicles,
promoting their translocation to the plasma membrane to
stimulate glucose transport (26). In vitro, L6 muscle cells
overexpressing PKBa significantly increase glucose transport,
to a level comparable to that elicited normally by insulin in
nontransfected control cells, because of an increase in the
recruitment of GLUT4 to the plasma membrane (30). On the
basis of significant increases in PKBa and no change in
GLUT4 mRNA content in the present study, we hypothesize
that short-term CrM supplementation (in the absence of exer-
cise and/or dietary intervention) increases muscle glycogen
stores via an increase in GLUT4 recruitment to the sarco-
lemma, with no increase in GLUT4 mRNA and/or protein
content.

Creatine supplementation increases glycogen content, but
the cellular mechanisms supporting this observation are un-
clear (65). Creatine-fed rats increase muscle glycogen stores
because of the upregulation of GLUT4 mRNA expression via
AMP-activated protein kinase-dependent pathway (42), prob-
ably because of an increase in fasting plasma insulin levels
(74). In contrast, Op’t Eijnde et al. (64) reported that 5 days of
creatine supplementation did not increase GLUT4 expression
in rats. In humans, creatine supplementation prevented a de-
crease in muscle GLUT4 protein content during 2 wk of
immobilization and increased it during a subsequent 10 wk of
rehabilitation training in healthy subjects (65). Recently, van
Loon et al. (92) observed that creatine supplementation in men
increased skeletal muscle glycogen storage but had no effect on
GLUT4 mRNA and protein content. Similarly, in our microar-
ray analysis, we also observed no change in GLUT4 (SLC2A4;
AA978042) mRNA expression (P = 0.26) with CrM supple-
mentation (0.97-fold vs. PL). However, we observed a 21%
decrease (0.79-fold) in both skeletal muscle phosphofructoki-
nase and glycogen phosphorylase, but not hexokinase, mRNA
content following CrM supplementation (refer to http://www.
with the GLUT4 data, these observations indicate that the intra-
cellular glucose available for cellular functions is being directed
toward glycogen accretion through a decrease in glycogen break-
down and glycolysis. This is in accordance with the observed
increase in the potential energy provided by the phoshagen
pathway (TCr content) and the subsequent lower dependence on
glycolysis to furnish immediate energy sources.

In addition to protein synthesis, PKBa positively regulates
glycogen synthesis by deactivating glycogen synthase kinase-
β, thus increasing glycogen synthase activity (31). It is
suggested that PKBa associates with GLUT4-containing vesicles,
promoting their translocation to the plasma membrane to
stimulate glucose transport (26). In vitro, L6 muscle cells
overexpressing PKBa significantly increase glucose transport,
to a level comparable to that elicited normally by insulin in
nontransfected control cells, because of an increase in the
recruitment of GLUT4 to the plasma membrane (30). On the
basis of significant increases in PKBa and no change in
GLUT4 mRNA content in the present study, we hypothesize
that short-term CrM supplementation (in the absence of exer-
cise and/or dietary intervention) increases muscle glycogen
stores via an increase in GLUT4 recruitment to the sarco-
lemma, with no increase in GLUT4 mRNA and/or protein
content.
mediated, at least in part, by CrM-induced cell swelling, an early cellular response to CrM supplementation. Cell swelling may act as an anabolic stimulus facilitating downstream myogenic regulatory factor (MRF) pathways that, in turn, may stimulate satellite cells to proliferate and fuse with existing myofibers (36, 63). In the present study, we did not observe an increase in mean fiber area as previously reported, which could be because of our short period of supplementation compared with longer periods in studies showing this effect (94). Nonetheless, we did observe an early transcriptional and translational response at the cellular level, which explains previously observed effects of creatine supplementation on satellite cell proliferation and differentiation (16, 36, 41, 63, 93).

We observed a substantial induction in SPHK1 mRNA expression (5.0-fold) in the skeletal muscle of subjects supplemented with CrM. SPHK1 is a lipid kinase that is greatly enhanced in differentiating C2C12 myoblasts via modulating signal transduction and catalyzes the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P). S1P is a bioactive intracellular lipid mediator and a ligand for S1P receptors that trigger various key mitogenic signaling pathways (i.e., MAPK, phospholipase D, Rho, and cytosolic calcium increase) involved in the regulation of myoblast proliferation and differentiation and skeletal muscle fatigue prevention (17, 58, 82).

Myoblast proliferation and differentiation involve the activation of several key signaling pathways such as ERK1/ERK2, p38 MAPK, and PI3K/PKBa (14, 101). Donati et al. (21) observed that S1P exerts a prodifferentiation activity via p38 MAPK and PKBa induction (21). p38 MAPK, a stress-sensitive kinase, is upregulated in response to cell swelling (61). Indeed, we observed with CrM supplementation robust increases in p38 MAPK and PKBa mRNA and protein content, which are mandatory for myoblast differentiation and to enhance the expression of downstream myogenic differentiation markers, such as myogenin, myosin heavy chain, and caveolin-3, that may lead to muscle accretion (21). CrM supplementation increases actin and myosin protein and myosin mRNA content in vitro and myogenic transcription factors (MRF4, MEF2A, MEF2C, MEF2D, and myogenin) in vivo (41, 102). We suggest that, taken together, the SPHK1-mediated pathways play an important role in CrM-mediated myoblast differentiation.

Furthermore, we observed an upregulation of ERK6 mRNA and protein content and MKL1 mRNA expression in the skeletal muscle of CrM-supplemented subjects. In vitro studies have shown that the activation of ERK6, a serine/threonine stress-activated protein kinase, parallels that of p38 MAPK in response to osmotic shock (76). Lechner et al. (49) reported that ERK6 is highly expressed in human skeletal muscle and functions as a signal transducer during differentiation of myoblasts to myotubes (49). MKL1 is a potent transcriptional coactivator of serum response element-dependent genes through its direct binding to serum response factor and thus contributes to both striated and smooth muscle differentiation (78). The coordinated induction of these genes will regulate satellite cell proliferation and differentiation with CrM supplementation.

CrM Activates Genes Involved in Regulating DNA Replication and Repair

Another novel finding is that CrM supplementation activated genes that are positive regulators of DNA replication and repair and nuclear chromatin organization, including REPIN1, HIST1H2BK, and TDP1. In vitro, REPIN1 possesses ATP-dependent DNA helicase activity and is involved in initiating chromosomal DNA synthesis in mammalian cells (15), which could explain the increase in DNA synthesis during satellite...
cell mitotic activity following creatine supplementation. HIST1H2BK gene encodes a member of the histone H2B family and is a core component of nucleosomes responsible for high-order chromatin stability and organization in the nucleus (20). TDP1 works in conjunction with topoisomerase I to repair DNA lesions and chromosomal single-strand breaks and removes glycolate from single-stranded DNA containing a 3'-phosphoglycolate, suggesting a role for TDP1 in the repair of free radical-mediated DNA double-strand breaks (23, 71). A deficiency in this DNA repair pathway in humans causes spinocerebellar ataxia with axonal neuropathy by affecting terminally differentiated neurons (83), and hence CrM supplementation may be a potential therapeutic agent for spinocerebellar ataxia patients.

CrM Activates Genes Involved in Regulating mRNA Processing and Transcription

We also observed a significant upregulation (3.8- to 1.6-fold) of mRNA species collectively involved in regulating mRNA processing and transcription, including TFDP2, CEBPZ, PRPF8, exonuclease NEF-sp (EXO-NEF), RBM4, and MATR3.

TFDP2 is a transcription factor that heterodimerizes with E2F transcription factor-1 to regulate genes required for the progression of the S phase, such as DHFR and DNA polymerase-α, and thus is essential in cell cycle regulation and differentiation (103). CEBPZ interacts with the CCAAT motif present in the proximal promoters of numerous mammalian genes (57). In vitro, dominant-negative CEBPZ mutants reduce the expression of various genes including the α-2 collagen, E2F transcription factor-1, and topoisomerase IIα, resulting in fibroblast cell growth delay (38). Hence, CrM supplementation activates the transcription of genes that may play a role in downstream cellular proliferation and differentiation in addition to influencing DNA replication and repair regulation.

CrM supplementation also activated genes involved in mRNA processing and maturation, steps crucial for successful translation. PRPF8 is a component of both U2- and U12-dependent spliceosomes involved in mRNA processing (52). Exonuclease NEF-sp is involved in the rRNA and tRNA processing and maturation via 3'- to 5'-exonuclease activity. Similarly, RBM4 is involved in RNA processing (48). CrM supplementation also induced MATR3, a nuclear matrix protein, which is involved in nuclear retention of defective RNA and interacts with other nuclear matrix proteins to form the internal fibrogranular network (104).

CrM Supplementation Activates Genes That Promote Cell Survival

CrM supplementation activated genes involved in cell survival and anti-apoptotic pathways, including PKBa, SPHK1, FAIM2, and ANGPTL4. Both PKBa and SPHK1 act as anti-apoptotic and cell survival signaling kinases, in addition to their role in regulating cellular metabolism (PKBa) and myogenesis (SPHK1) (50, 79). In cell culture, FAIM2 has an anti-apoptotic function that provides protection from Fas-mediated cell death (81). This is in parallel with previous findings that CrM supplementation has potential neuroprotective effects in a mouse model of Huntington’s disease (19, 25) and cerebral ischemia (105), including buffering of intracellular energy reserves, stabilizing intracellular calcium, and inhibiting activation of the mitochondrial permeability transition pore, all of which have been linked to excitotoxic and apoptotic cell death.

Conclusion

In this study, we have identified that short-term CrM supplementation in healthy young men activates genes in the skeletal muscle that are involved in various aspects of osm-sensing, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, cell survival, DNA replication and repair, RNA transcription control, and cytoskeleton remodeling (Fig. 3). We propose that CrM supplementation induces rapid and coordinate induction of these regulatory proteins at the molecular level, resulting in increases in maximal muscle strength and power, FFM, total body water, and total body weight, independent of training and/or dietary intervention.

ACKNOWLEDGMENTS

We acknowledge Dr. Mazen J. Hamadeh for gracious assistance with the preparation and critical review of the manuscript and Krysta Felkey for technical assistance in uploading the cDNA microarray data to the Gene Expression Omnibus repository.

REFERENCES

11. Burke DG, Chilibeck PD, Parise G, Tarnopolsky MA, Candow DG. Effect of alpha-lipoic acid combined with creatine monohydrate on...

58. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA.

